Suppr超能文献

Web2.0为光谱数据中化合物的协作式和探索性分析开辟了新途径。

Web2.0 paves new ways for collaborative and exploratory analysis of chemical compounds in spectrometry data.

作者信息

Loyek Christian, Bunkowski Alexander, Vautz Wolfgang, Nattkemper Tim W

机构信息

Biodata Mining Group, Faculty of Technology, Bielefeld University, Germany.

出版信息

J Integr Bioinform. 2011 Jul 18;8(2):158. doi: 10.2390/biecoll-jib-2011-158.

Abstract

In nowadays life science projects, sharing data and data interpretation is becoming increasingly important. This considerably calls for novel information technology approaches, which enable the integration of expert knowledge from different disciplines in combination with advanced data analysis facilities in a collaborative manner. Since the recent development of web technologies offers scientific communities new ways for cooperation and communication, we propose a fully web-based software approach for the collaborative analysis of bioimage data and demonstrate the applicability of Web2.0 techniques to ion mobility spectrometry image data. Our approach allows collaborating experts to easily share, explore and discuss complex image data without any installation of software packages. Scientists only need a username and a password to get access to our system and can directly start exploring and analyzing their data.

摘要

在当今的生命科学项目中,数据共享和数据解读变得越来越重要。这极大地需要新颖的信息技术方法,这些方法能够以协作的方式将来自不同学科的专家知识与先进的数据分析工具相结合。由于网络技术的最新发展为科学界提供了新的合作与交流方式,我们提出了一种完全基于网络的软件方法用于生物图像数据的协作分析,并展示了Web2.0技术在离子迁移谱图像数据中的适用性。我们的方法允许合作的专家轻松共享、探索和讨论复杂的图像数据,而无需安装任何软件包。科学家只需一个用户名和密码就能访问我们的系统,并可以直接开始探索和分析他们的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验