De la Cruz Rolando, Marshall Guillermo, Quintana Fernando A
Departamento de Salud Páblica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 434, Casilla 114D, Santiago, Chile.
Biom J. 2011 Sep;53(5):735-49. doi: 10.1002/bimj.201000142. Epub 2011 Jul 19.
In many studies, the association of longitudinal measurements of a continuous response and a binary outcome are often of interest. A convenient framework for this type of problems is the joint model, which is formulated to investigate the association between a binary outcome and features of longitudinal measurements through a common set of latent random effects. The joint model, which is the focus of this article, is a logistic regression model with covariates defined as the individual-specific random effects in a non-linear mixed-effects model (NLMEM) for the longitudinal measurements. We discuss different estimation procedures, which include two-stage, best linear unbiased predictors, and various numerical integration techniques. The proposed methods are illustrated using a real data set where the objective is to study the association between longitudinal hormone levels and the pregnancy outcome in a group of young women. The numerical performance of the estimating methods is also evaluated by means of simulation.
在许多研究中,连续反应的纵向测量与二元结局之间的关联常常是研究的重点。对于这类问题,一个方便的框架是联合模型,它通过一组共同的潜在随机效应来研究二元结局与纵向测量特征之间的关联。联合模型是本文的核心内容,它是一个逻辑回归模型,其中协变量被定义为纵向测量的非线性混合效应模型(NLMEM)中的个体特定随机效应。我们讨论了不同的估计方法,包括两阶段法、最佳线性无偏预测器以及各种数值积分技术。通过一个实际数据集对所提出的方法进行了说明,该数据集的目的是研究一组年轻女性纵向激素水平与妊娠结局之间的关联。还通过模拟评估了估计方法的数值性能。