Raza Rizwan, Gao Zhan, Singh Tavpraneet, Singh Gajendra, Li Song, Zhu Bin
Department of Energy Technology, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden.
J Nanosci Nanotechnol. 2011 Jun;11(6):5402-7. doi: 10.1166/jnn.2011.3784.
This paper reports a new approach to develop functional solid oxide fuel cells (SOFC) electrolytes based on nanotechnology and two-phase nanocomposite approaches using non-oxygen ion or proton conductors, e.g., lithium aluminate-lithium sodium carbonate, with great freedom in material design and development. Benefited by nanotechnology and nanocomposite technology, the lithium aluminate-lithium sodium carbonate two-phase composite electrolytes can significantly enhance the material conductivity and fuel cell performance at low temperatures, such as 300 degrees C-600 degrees C compared to non-nano scale materials. The conductivity mechanism and fuel cell functions are discussed to be benefited by the interfacial behavior between the two constituent phases in nano-scale effects, where oxygen ion and proton conductivity can be created, although there are no intrinsic mobile oxygen ions and protons. It presents a new scientific approach to design and develop fuel cell materials in breaking the structural limitations by using non-ionic conductors on the desired ions i.e., proton and oxygen ions, and creating high proton and oxygen ion conductors through interfaces and interfacial mechanism.
本文报道了一种基于纳米技术和两相纳米复合方法来开发功能型固体氧化物燃料电池(SOFC)电解质的新途径,该方法使用非氧离子或质子导体,如铝酸锂 - 碳酸锂钠,在材料设计和开发方面具有很大的自由度。受益于纳米技术和纳米复合技术,与非纳米级材料相比,铝酸锂 - 碳酸锂钠两相复合电解质在低温(如300℃ - 600℃)下可显著提高材料的导电性和燃料电池性能。文中讨论了导电机制和燃料电池功能得益于纳米尺度效应中两个组成相之间的界面行为,尽管不存在本征移动氧离子和质子,但在此处可产生氧离子和质子传导性。它提出了一种设计和开发燃料电池材料的新科学方法,即通过使用对所需离子(即质子和氧离子)而言的非离子导体来打破结构限制,并通过界面和界面机制创建高质子和氧离子导体。