Laboratory of Functional Ceramics, A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences , 49 Leninskii Pr., 119334 Moscow, Russia.
Acc Chem Res. 2017 Feb 21;50(2):273-280. doi: 10.1021/acs.accounts.6b00473. Epub 2017 Feb 10.
High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.
高温电化学设备,如基于陶瓷材料的固体氧化物燃料电池(SOFC)和氧分离器,用于高效能量转换。这些设备通常在 800-1000°C 的温度范围内运行。高工作温度导致 SOFC 和氧分离器材料加速降解。为了解决这个问题,必须降低这些电化学设备的工作温度。然而,降低温度伴随着燃料电池电解质和氧分离器膜离子电导率的降低。因此,需要寻找在较低温度下具有高离子电导率的替代电解质和膜材料。熔融氧化物作为电化学能源材料有很多机会。由于其独特的电化学特性,熔融氧化物的创新可以为提高能源效率带来显著的好处。特别是新开发的电化学熔融氧化物材料在中温(600-800°C)下具有较高的离子电导率,可用于熔融氧化物燃料电池(MOFC)和熔融氧化物膜(MOM)。与陶瓷材料相比,在晶界处同时含有固态颗粒和液态通道的熔融氧化物材料具有优势。例如,熔融氧化物材料具有延展性,解决了热不兼容性(热膨胀系数差异,CTE)的问题。此外,MOM 材料优异的氧气选择性使我们能够从空气中分离超高纯度氧气。对于它们来说,MOFC 电解质在中温下具有最高的离子电导率。为了评估熔融氧化物材料在技术应用中的潜力,必须揭示这些材料的微观结构与其传输和机械性能之间的关系。本账户总结了潜在 MOM 材料和 MOFC 电解质中氧离子输运的最新研究结果。此外,我们还考虑了金属表面灾难性氧化过程中形成的熔融氧化物层中的快速氧传输,并表明相同的传输可在 MOM 和 MOFC 中有益地使用。还考虑了解释熔融氧化物中氧传输的聚合物模型。了解氧化物熔体中的氧传输机制对于开发新一代能源材料至关重要,这将有助于电化学设备在中温下更有效地运行。在这里,我们强调了在这方面取得的进展。我们还展示了在寻找具有高混合离子电子和离子电导率的替代熔融氧化物材料方面取得的最新进展,分别用于 MOM 和 MOFC。提出了进一步研究的前景。