Tsikas Dimitrios, Zoerner Alexander A, Jordan Jens
Hannover Medical School, Hannover, Germany.
Biochim Biophys Acta. 2011 Nov;1811(11):694-705. doi: 10.1016/j.bbalip.2011.06.015. Epub 2011 Jun 26.
Compared to the arachidonic acid (C20:4) cascade, the oleic acid (C18:1) family comprises a handful known metabolites. The pathophysiology of oleic acid and its oxidized and nitrated metabolites, i.e., cis-9,10-epoxyoctadecanoic acid (cis-EpOA) and the two vinylic nitro-oleic acids cis-9-nitro-oleic acid (9-NO(2)-OA) and cis-10-nitro-oleic acid (10-NO(2)-OA), is only little investigated and little understood. cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA have been detected in plasma of healthy and ill human subjects by means of gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques in their acid and esterified forms. cis-EpOA is formed from oleic acid by the catalytic action of various cytochrome P450 isozymes. In end-stage liver disease, cis-EpOA plasma concentration is lower than in healthy subjects suggesting liver as the main organ responsible for cis-EpOA synthesis. The origin of 9-NO(2)-OA and 10-NO(2)-OA and of other nitrated oleic acid metabolites is unknown. In vitro models, nitro-oleic acid species can be formed non-enzymatically from oleic acid and nitrogen dioxide. Thus, endogenous nitro-oleic acids could serve as biomarkers of fatty acid nitration by reactive nitrogen species. Synthetic 9-NO(2)-OA and 10-NO(2)-OA at concentrations of three orders of magnitude higher than their endogenous counterparts have interesting pharmacological features and are currently intensely investigated. The present article reviews and discusses currently available analytical methods for the quantitative determination of cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA in biological samples, notably in human plasma, and the potential biological significance of these oleic acid metabolites. Special emphasis is given to GC-MS/MS and LC-MS/MS methods utilizing the stable-isotope dilution technique. The sensitivity and specificity of the MS/MS approach make electron-capture negative ion chemical ionization (ECNICI) GC-MS/MS and negative electrospray ionization (NESI) LC-MS/MS methodologies indispensable in experimental and clinical settings on oxidative and nitrative oleic acid metabolism. These techniques are particularly suited to delineate the oleic acid cascade.
与花生四烯酸(C20:4)级联反应相比,油酸(C18:1)家族的已知代谢产物较少。油酸及其氧化和硝化代谢产物,即顺式-9,10-环氧十八烷酸(cis-EpOA)以及两种乙烯基硝基油酸顺式-9-硝基油酸(9-NO(2)-OA)和顺式-10-硝基油酸(10-NO(2)-OA)的病理生理学研究较少,人们对此了解也不多。通过气相色谱-串联质谱法(GC-MS/MS)和液相色谱-串联质谱法(LC-MS/MS)技术,已在健康和患病人类受试者的血浆中检测到酸形式和酯化形式的cis-EpOA、9-NO(2)-OA和10-NO(2)-OA。cis-EpOA由油酸通过各种细胞色素P450同工酶的催化作用形成。在终末期肝病中,cis-EpOA的血浆浓度低于健康受试者,这表明肝脏是负责cis-EpOA合成的主要器官。9-NO(2)-OA和10-NO(2)-OA以及其他硝化油酸代谢产物的来源尚不清楚。在体外模型中,硝基油酸类物质可由油酸和二氧化氮非酶促形成。因此,内源性硝基油酸可作为活性氮物种对脂肪酸硝化作用的生物标志物。合成的9-NO(2)-OA和10-NO(2)-OA浓度比内源性对应物高三个数量级,具有有趣的药理学特性,目前正在深入研究。本文综述并讨论了目前用于定量测定生物样品(尤其是人血浆)中cis-EpOA、9-NO(2)-OA和10-NO(2)-OA的分析方法,以及这些油酸代谢产物的潜在生物学意义。特别强调了利用稳定同位素稀释技术的GC-MS/MS和LC-MS/MS方法。MS/MS方法的灵敏度和特异性使得电子捕获负离子化学电离(ECNICI)GC-MS/MS和负电喷雾电离(NESI)LC-MS/MS方法在氧化和硝化油酸代谢的实验和临床研究中不可或缺。这些技术特别适合描绘油酸级联反应。