Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
J Biol Chem. 2011 Sep 9;286(36):31337-46. doi: 10.1074/jbc.M111.233353. Epub 2011 Jul 19.
Human natural killer-1 (HNK-1) carbohydrate is highly expressed in the nervous system and is involved in synaptic plasticity and dendritic spine maturation. This unique carbohydrate, consisting of a sulfated trisaccharide (HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc-), is biosynthesized by the successive actions of β-1,4-galactosyltransferase (β4GalT), glucuronyltransferase (GlcAT-P and GlcAT-S), and sulfotransferase (HNK-1ST). A previous study showed that mice lacking β4GalT-II, one of seven β4GalTs, exhibited a dramatic loss of HNK-1 expression in the brain, although β4GalT-I-deficient mice did not. Here, we investigated the underlying molecular mechanism of the regulation of HNK-1 expression. First, focusing on a major HNK-1 carrier, neural cell adhesion molecule, we found that reduced expression of an N-linked HNK-1 carbohydrate caused by a deficiency of β4GalT-II is not likely due to a general loss of the β1,4-galactose residue as an acceptor for GlcAT-P. Instead, we demonstrated by co-immunoprecipitation and endoplasmic reticulum-retention analyses using Neuro2a (N2a) cells that β4GalT-II physically and specifically associates with GlcAT-P. In addition, we revealed by pulldown assay that Golgi luminal domains of β4GalT-II and GlcAT-P are sufficient for the complex to form. With an in vitro assay system, we produced the evidence that the kinetic efficiency k(cat)/K(m) of GlcAT-P in the presence of β4GalT-II was increased about 2.5-fold compared with that in the absence of β4GalT-II. Finally, we showed that co-expression of β4GalT-II and GlcAT-P increased HNK-1 expression on various glycoproteins in N2a cells, including neural cell adhesion molecule. These results indicate that the specific enzyme complex of β4GalT-II with GlcAT-P plays an important role in the biosynthesis of HNK-1 carbohydrate.
人类自然杀伤细胞-1 (HNK-1) 碳水化合物在神经系统中高度表达,参与突触可塑性和树突棘成熟。这种独特的碳水化合物由一个硫酸化三糖 (HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc-) 组成,由β-1,4-半乳糖基转移酶 (β4GalT)、葡萄糖醛酸基转移酶 (GlcAT-P 和 GlcAT-S) 和硫酸转移酶 (HNK-1ST) 的连续作用生物合成。先前的研究表明,缺乏七种β4GalTs 之一的β4GalT-II 的小鼠在大脑中 HNK-1 的表达明显丧失,尽管β4GalT-I 缺陷型小鼠没有。在这里,我们研究了 HNK-1 表达调控的潜在分子机制。首先,我们专注于主要的 HNK-1 载体——神经细胞粘附分子,发现由于β4GalT-II 的缺乏导致的 N 连接 HNK-1 碳水化合物表达减少不太可能是由于β1,4-半乳糖残基作为 GlcAT-P 的受体普遍丢失所致。相反,我们通过共免疫沉淀和内质网保留分析在 Neuro2a (N2a) 细胞中证明,β4GalT-II 与 GlcAT-P 物理和特异性结合。此外,我们通过下拉测定揭示了β4GalT-II 和 GlcAT-P 的高尔基体腔域足以形成复合物。通过体外测定系统,我们提供了证据表明,在存在β4GalT-II 的情况下,GlcAT-P 的动力学效率 k(cat)/K(m) 比不存在β4GalT-II 时增加了约 2.5 倍。最后,我们表明,β4GalT-II 和 GlcAT-P 的共表达增加了 N2a 细胞中各种糖蛋白上的 HNK-1 表达,包括神经细胞粘附分子。这些结果表明,β4GalT-II 与 GlcAT-P 的特定酶复合物在 HNK-1 碳水化合物的生物合成中发挥重要作用。