Suppr超能文献

用于预测取代3-氨基吲唑类似物受体酪氨酸激酶抑制活性的模型。

Models for the prediction of receptor tyrosine kinase inhibitory activity of substituted 3-aminoindazole analogues.

作者信息

Gupta Monika, Dureja Harish, Madan Anil Kumar

机构信息

Faculty of Pharmaceutical Sciences, M. D. University, Rohtak-124001, India.

出版信息

Sci Pharm. 2011 Apr-Jun;79(2):239-57. doi: 10.3797/scipharm.1102-08. Epub 2011 Apr 28.

Abstract

The inhibition of tumor angiogenesis has become a compelling approach in the development of anticancer drugs. In the present study, topological models were developed through decision tree and moving average analysis using a data set comprising 42 analogues of 3-aminoindazoles. A total of 22 descriptors (distance based, adjacency based, pendenticity and distance-cum-adjacency based) were used. The values of all 22 topological indices for each analogue in the dataset were computed using an in-house computer program. A decision tree was constructed for the receptor tyrosine kinase KDR (kinase insert domain receptor) inhibitory activity to determine the importance of topological indices. The decision tree learned the information from the input data with an accuracy of 88%. Three independent topological models were also developed for prediction of receptor tyrosine kinase inhibitory (KDR) activity using moving average analysis. The models developed were also found to be sensitive towards the prediction of other receptor tyrosine kinases i.e. FLT3 (fms-like tyrosine kinase-3) and cKIT inhibitory activity. The accuracy of classification of single index based models using moving average analysis was found to be 88%. The performance of models was assessed by calculating precision, sensitivity, overall accuracy and Mathew's correlation coefficient (MCC). The significance of the models was also assessed by intercorrelation analysis.

摘要

抑制肿瘤血管生成已成为抗癌药物研发中一种引人注目的方法。在本研究中,通过决策树和移动平均分析,利用包含42种3-氨基吲唑类似物的数据集建立了拓扑模型。总共使用了22个描述符(基于距离、基于邻接、悬垂性以及基于距离和邻接的组合)。数据集中每个类似物的所有22个拓扑指数的值均使用内部计算机程序进行计算。构建了一个针对受体酪氨酸激酶KDR(激酶插入结构域受体)抑制活性的决策树,以确定拓扑指数的重要性。该决策树从输入数据中学习信息,准确率为88%。还使用移动平均分析开发了三个独立的拓扑模型,用于预测受体酪氨酸激酶抑制(KDR)活性。所开发的模型对其他受体酪氨酸激酶即FLT3(fms样酪氨酸激酶-3)和cKIT抑制活性的预测也很敏感。发现使用移动平均分析的单指数模型的分类准确率为88%。通过计算精度、灵敏度、总体准确率和马修相关系数(MCC)来评估模型的性能。还通过相互关联分析评估了模型的显著性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验