Suppr超能文献

生物能源景观的生物地球化学:碳、氮和水的考虑因素。

The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.

机构信息

W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA.

出版信息

Ecol Appl. 2011 Jun;21(4):1055-67. doi: 10.1890/09-0456.1.

Abstract

The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well known, increasingly well documented, and recalcitrant: freshwater and coastal marine eutrophication, groundwater pollution, soil organic matter loss, and a warming atmosphere. The conversion of marginal lands not now farmed to annual grain production, including the repatriation of Conservation Reserve Program (CRP) and other conservation set-aside lands, will further exacerbate the biogeochemical imbalance of these landscapes, as could pressure to further simplify crop rotations. The expected emergence of biorefinery and combustion facilities that accept cellulosic materials offers an alternative outcome: agricultural landscapes that accumulate soil carbon, that conserve nitrogen and phosphorus, and that emit relatively small amounts of nitrous oxide to the atmosphere. Fields in these landscapes are planted to perennial crops that require less fertilizer, that retain sediments and nutrients that could otherwise be transported to groundwater and streams, and that accumulate carbon in both soil organic matter and roots. If mixed-species assemblages, they additionally provide biodiversity services. Biogeochemical responses of these systems fall chiefly into two areas: carbon neutrality and water and nutrient conservation. Fluxes must be measured and understood in proposed cropping systems sufficient to inform models that will predict biogeochemical behavior at field, landscape, and regional scales. Because tradeoffs are inherent to these systems, a systems approach is imperative, and because potential biofuel cropping systems and their environmental contexts are complex and cannot be exhaustively tested, modeling will be instructive. Modeling alternative biofuel cropping systems converted from different starting points, for example, suggests that converting CRP to corn ethanol production under conventional tillage results in substantially increased net greenhouse gas (GHG) emissions that can be only partly mitigated with no-till management. Alternatively, conversion of existing cropland or prairie to switchgrass production results in a net GHG sink. Outcomes and policy must be informed by science that adequately quantifies the true biogeochemical costs and advantages of alternative systems.

摘要

粮食作物生产生物能源的生物地球化学负担与粮食作物生产并无不同

硝酸盐过度渗漏、土壤碳和磷流失、一氧化二氮生成以及甲烷吸收能力减弱。伴随而来的问题众所周知,且越来越有文件记载,但仍难以解决:淡水和沿海水域富营养化、地下水污染、土壤有机质流失以及气候变暖。将目前未耕种的边缘土地转换为粮食的年生产,包括归还保护储备计划(CRP)和其他保护保留地,将进一步加剧这些景观的生物地球化学失衡,也可能会对进一步简化作物轮作造成压力。预计生物精炼厂和接受纤维素材料的燃烧设施的出现将带来另一种结果:积累土壤碳、保存氮和磷以及向大气中排放相对较少一氧化二氮的农业景观。这些景观中的田地种植多年生作物,这些作物需要的肥料较少,保留了原本可能被输送到地下水和溪流中的沉积物和养分,并在土壤有机质和根系中积累碳。如果是混合物种组合,还会提供生物多样性服务。这些系统的生物地球化学反应主要有两个方面:碳中性和水与养分保护。必须在拟议的种植系统中测量和理解通量,以便为模型提供信息,从而预测田间、景观和区域尺度的生物地球化学行为。由于这些系统存在固有权衡,因此必须采用系统方法,而且由于潜在的生物燃料种植系统及其环境背景复杂,无法进行详尽测试,因此建模将具有指导意义。例如,通过模型转换不同起点的替代生物燃料种植系统,建议在常规耕作下将 CRP 转换为玉米乙醇生产会导致净温室气体(GHG)排放大幅增加,仅采用免耕管理可部分缓解这种情况。相反,将现有耕地或草原转换为柳枝稷生产则会形成净 GHG 汇。替代方案和政策必须以充分量化替代系统的真实生物地球化学成本和优势的科学为依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验