Université de Lyon, Centre de RMN à Très Hauts Champs, CNRS/ENS Lyon/UCB Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France.
J Proteome Res. 2011 Sep 2;10(9):4342-8. doi: 10.1021/pr200489n. Epub 2011 Aug 3.
Supervised multivariate statistical analyses of NMR spectroscopic data sets are often required to identify metabolic differences between sample classes, and the use of orthogonal filters has proven to be highly efficient even when dealing with weak perturbations. In this note, we associate orthogonal filters to the recently reported recoupled-statistical total correlation spectroscopy (RSTOCSY). An initial supervised deflation of the spectral matrix is applied to remove all information orthogonal to the effect of interest and is followed by an RSTOCSY analysis to extract a list of pairs of metabolites that experience correlated perturbations. This list can then be used to find possibilities for the perturbed metabolic network. This supervised RSTOCSY approach, dubbed OR-STOCSY, yields metabolites related to perturbations of biological interest, even if they make a minor contribution to the global variance of a complex data set compared to other (possibly confounding) effects under study. The method is demonstrated with the application to genetic phenotypes in Caenorhabditis elegans.
通常需要对 NMR 波谱数据集进行监督多元统计分析,以识别样本类别之间的代谢差异,并且已经证明即使在处理弱扰动时,正交滤波器的使用也非常有效。在本说明中,我们将正交滤波器与最近报道的解耦统计全相关光谱学(RSTOCSY)相关联。首先对光谱矩阵进行初始的有监督解卷积,以去除与感兴趣的效应正交的所有信息,然后进行 RSTOCSY 分析,以提取经历相关扰动的一对代谢物列表。然后可以使用该列表来寻找受扰代谢网络的可能性。这种有监督的 RSTOCSY 方法称为 OR-STOCSY,即使与其他正在研究的(可能混杂的)效应相比,与生物感兴趣的扰动相关的代谢物对复杂数据集的总方差的贡献较小,也能产生相关代谢物。该方法通过在秀丽隐杆线虫的遗传表型中的应用得到了验证。