Suppr超能文献

用于高通量代谢表型研究及检测与2型糖尿病相关胰岛素抵抗的人体血浆1H NMR光谱数据处理优化

Optimization of human plasma 1H NMR spectroscopic data processing for high-throughput metabolic phenotyping studies and detection of insulin resistance related to type 2 diabetes.

作者信息

Maher Anthony D, Crockford Derek, Toft Henrik, Malmodin Daniel, Faber Johan H, McCarthy Mark I, Barrett Amy, Allen Maxine, Walker Mark, Holmes Elaine, Lindon John C, Nicholson Jeremy K

机构信息

Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, South Kensington SW7 2AZ, United Kingdom.

出版信息

Anal Chem. 2008 Oct 1;80(19):7354-62. doi: 10.1021/ac801053g. Epub 2008 Aug 30.

Abstract

Optimizing NMR experimental parameters for high-throughput metabolic phenotyping requires careful examination of the total biochemical information obtainable from (1)H NMR data, which includes concentration and molecular dynamics information. Here we have applied two different types of mathematical transformation (calculation of the first derivative of the NMR spectrum and Gaussian shaping of the free-induction decay) to attenuate broad spectral features from macromolecules and enhance the signals of small molecules. By application of chemometric methods such as principal component analysis (PCA), orthogonal projections to latent structures discriminant analysis (O-PLS-DA) and statistical spectroscopic tools such as statistical total correlation spectroscopy (STOCSY), we show that these methods successfully identify the same potential biomarkers as spin-echo (1)H NMR spectra in which broad lines are suppressed via T2 relaxation editing. Finally, we applied these methods for identification of the metabolic phenotype of patients with type 2 diabetes. This "virtual" relaxation-edited spectroscopy (RESY) approach can be particularly useful for high-throughput screening of complex mixtures such as human plasma and may be useful for extraction of latent biochemical information from legacy or archived NMR data sets for which only standard 1D data sets exist.

摘要

为实现高通量代谢表型分析而优化核磁共振(NMR)实验参数,需要仔细研究从氢核磁共振(¹H NMR)数据中可获取的全部生化信息,其中包括浓度和分子动力学信息。在此,我们应用了两种不同类型的数学变换(计算NMR谱的一阶导数以及对自由感应衰减进行高斯整形)来减弱大分子的宽谱特征并增强小分子的信号。通过应用主成分分析(PCA)、正交投影到潜在结构判别分析(O-PLS-DA)等化学计量学方法以及统计全相关光谱学(STOCSY)等统计光谱工具,我们表明这些方法成功识别出了与自旋回波¹H NMR谱相同的潜在生物标志物,在自旋回波¹H NMR谱中,宽线通过T2弛豫编辑得以抑制。最后,我们将这些方法应用于2型糖尿病患者代谢表型的识别。这种“虚拟”弛豫编辑光谱学(RESY)方法对于高通量筛选复杂混合物(如人血浆)可能特别有用,并且可能有助于从仅存在标准一维数据集的旧有或存档NMR数据集中提取潜在的生化信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验