Digital Neuroanatomy, Max Planck Florida Institute, 5353 Parkside Drive, MC19-RE, Jupiter, FL 33458-2906, USA.
Neural Netw. 2011 Nov;24(9):998-1011. doi: 10.1016/j.neunet.2011.06.013. Epub 2011 Jun 25.
The three-dimensional (3D) structure of neural circuits represents an essential constraint for information flow in the brain. Methods to directly monitor streams of excitation, at subcellular and millisecond resolution, are at present lacking. Here, we describe a pipeline of tools that allow investigating information flow by simulating electrical signals that propagate through anatomically realistic models of average neural networks. The pipeline comprises three blocks. First, we review tools that allow fast and automated acquisition of 3D anatomical data, such as neuron soma distributions or reconstructions of dendrites and axons from in vivo labeled cells. Second, we introduce NeuroNet, a tool for assembling the 3D structure and wiring of average neural networks. Finally, we introduce a simulation framework, NeuroDUNE, to investigate structure-function relationships within networks of full-compartmental neuron models at subcellular, cellular and network levels. We illustrate the pipeline by simulations of a reconstructed excitatory network formed between the thalamus and spiny stellate neurons in layer 4 (L4ss) of a cortical barrel column in rat vibrissal cortex. Exciting the ensemble of L4ss neurons with realistic input from an ensemble of thalamic neurons revealed that the location-specific thalamocortical connectivity may result in location-specific spiking of cortical cells. Specifically, a radial decay in spiking probability toward the column borders could be a general feature of signal flow in a barrel column. Our simulations provide insights of how anatomical parameters, such as the subcellular organization of synapses, may constrain spiking responses at the cellular and network levels.
神经回路的三维(3D)结构是大脑中信息流动的重要限制因素。目前缺乏直接监测亚细胞和毫秒分辨率兴奋流的方法。在这里,我们描述了一个工具管道,允许通过模拟通过解剖上逼真的平均神经网络模型传播的电信号来研究信息流。该管道包括三个块。首先,我们回顾了允许快速自动获取 3D 解剖数据的工具,例如神经元体分布或从体内标记细胞重建的树突和轴突。其次,我们引入了 NeuroNet,这是一种用于组装平均神经网络的 3D 结构和布线的工具。最后,我们引入了一个模拟框架 NeuroDUNE,用于在亚细胞、细胞和网络水平上研究全室分神经元模型网络中的结构-功能关系。我们通过模拟大鼠触须皮层中皮层桶柱第 4 层(L4ss)中丘脑和棘星形神经元之间形成的重建兴奋性网络来说明该管道。用来自丘脑神经元集合的现实输入兴奋 L4ss 神经元集合,结果表明位置特异性丘脑皮质连接可能导致皮质细胞的位置特异性放电。具体来说,朝向柱边界的放电概率径向衰减可能是桶柱中信号流的一般特征。我们的模拟提供了有关解剖学参数(例如突触的亚细胞组织)如何在细胞和网络水平上限制放电反应的见解。