Suppr超能文献

利用合成神经元群体将宏观神经解剖学与微观神经解剖学联系起来。

Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.

作者信息

Schneider Calvin J, Cuntz Hermann, Soltesz Ivan

机构信息

Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America.

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt/Main, Germany; Institute of Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany; Frankfurt Institute for Advanced Studies, Frankfurt/Main, Germany.

出版信息

PLoS Comput Biol. 2014 Oct 23;10(10):e1003921. doi: 10.1371/journal.pcbi.1003921. eCollection 2014 Oct.

Abstract

Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.

摘要

树突形态已被证明对神经元功能有显著影响。然而,在研究神经网络的计算时,诸如属于同一神经元类型的细胞之间树突形态的固有变异性等群体特征常常被忽视。虽然对于许多类型的单个神经元存在形态学和电生理学的详细模型,但详细的单细胞形态在群体中的作用尚未进行定量或计算研究。在这里,我们利用树突状树所在神经组织的结构背景来驱动它们在计算机上的生成。我们通过在由(1)包含所有胞体的颗粒细胞层和(2)包含树突状森林的分子层的实际结构背景界定的特征性树突状场中生长齿状回颗粒细胞(海马体中数量最多的细胞类型)的树突状树,来合成整个群体。这个过程使分支统计能够与更大尺度的神经解剖学特征联系起来。我们发现,树突总长度和单个路径长度测量值存在很大差异,这是齿状回位置和颗粒细胞层中胞体深度的函数。我们还预测了侵入分子层中给定体积的独特颗粒细胞树突的数量。这项工作能够对形态学特性进行完整的群体水平研究,并提供一个开发复杂且现实的神经网络模型的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验