Suppr超能文献

皮质柱中的兴奋性信号传导与连接:以桶状皮质为重点。

Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex.

作者信息

Lübke Joachim, Feldmeyer Dirk

机构信息

Research Centre Jülich, Institute of Neurosciences and Biophysics INB-3, Leo-Brandt-Str, 52425 Jülich, Germany.

出版信息

Brain Struct Funct. 2007 Jul;212(1):3-17. doi: 10.1007/s00429-007-0144-2. Epub 2007 Jun 1.

Abstract

A basic feature of the neocortex is its organization in functional, vertically oriented columns, recurring modules of signal processing and a system of transcolumnar long-range horizontal connections. These columns, together with their network of neurons, present in all sensory cortices, are the cellular substrate for sensory perception in the brain. Cortical columns contain thousands of neurons and span all cortical layers. They receive input from other cortical areas and subcortical brain regions and in turn their neurons provide output to various areas of the brain. The modular concept presumes that the neuronal network in a cortical column performs basic signal transformations, which are then integrated with the activity in other networks and more extended brain areas. To understand how sensory signals from the periphery are transformed into electrical activity in the neocortex it is essential to elucidate the spatial-temporal dynamics of cortical signal processing and the underlying neuronal 'microcircuits'. In the last decade the 'barrel' field in the rodent somatosensory cortex, which processes sensory information arriving from the mysticial vibrissae, has become a quite attractive model system because here the columnar structure is clearly visible. In the neocortex and in particular the barrel cortex, numerous neuronal connections within or between cortical layers have been studied both at the functional and structural level. Besides similarities, clear differences with respect to both physiology and morphology of synaptic transmission and connectivity were found. It is therefore necessary to investigate each neuronal connection individually, in order to develop a realistic model of neuronal connectivity and organization of a cortical column. This review attempts to summarize recent advances in the study of individual microcircuits and their functional relevance within the framework of a cortical column, with emphasis on excitatory signal flow.

摘要

新皮层的一个基本特征是其在功能上呈垂直排列的柱状组织,这是信号处理的重复模块以及跨柱状长距离水平连接系统。这些柱状结构连同其神经元网络存在于所有感觉皮层中,是大脑中感觉感知的细胞基础。皮质柱包含数千个神经元,跨越所有皮质层。它们接收来自其他皮质区域和皮质下脑区的输入,反过来其神经元又向大脑的各个区域提供输出。模块化概念假定皮质柱中的神经元网络执行基本的信号转换,然后这些转换与其他网络以及更广泛脑区的活动整合在一起。为了理解来自外周的感觉信号如何在新皮层中转化为电活动,阐明皮质信号处理的时空动态以及潜在的神经元“微电路”至关重要。在过去十年中,啮齿动物体感皮层中的“桶状”区域成为了一个颇具吸引力的模型系统,该区域处理来自神秘触须的感觉信息,因为在这里柱状结构清晰可见。在新皮层,尤其是桶状皮层中,已经在功能和结构层面研究了皮质层内或层间的众多神经元连接。除了相似之处,还发现了突触传递和连接性在生理和形态方面的明显差异。因此,有必要单独研究每个神经元连接,以便建立一个关于皮质柱神经元连接性和组织的现实模型。本综述试图总结在皮质柱框架内单个微电路及其功能相关性研究的最新进展,重点是兴奋性信号流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验