Rigutini Leonardo, Papini Tiziano, Maggini Marco, Scarselli Franco
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena, Siena, Italy.
IEEE Trans Neural Netw. 2011 Sep;22(9):1368-80. doi: 10.1109/TNN.2011.2160875. Epub 2011 Jul 18.
Relevance ranking consists in sorting a set of objects with respect to a given criterion. However, in personalized retrieval systems, the relevance criteria may usually vary among different users and may not be predefined. In this case, ranking algorithms that adapt their behavior from users' feedbacks must be devised. Two main approaches are proposed in the literature for learning to rank: the use of a scoring function, learned by examples, that evaluates a feature-based representation of each object yielding an absolute relevance score, a pairwise approach, where a preference function is learned to determine the object that has to be ranked first in a given pair. In this paper, we present a preference learning method for learning to rank. A neural network, the comparative neural network (CmpNN), is trained from examples to approximate the comparison function for a pair of objects. The CmpNN adopts a particular architecture designed to implement the symmetries naturally present in a preference function. The learned preference function can be embedded as the comparator into a classical sorting algorithm to provide a global ranking of a set of objects. To improve the ranking performances, an active-learning procedure is devised, that aims at selecting the most informative patterns in the training set. The proposed algorithm is evaluated on the LETOR dataset showing promising performances in comparison with other state-of-the-art algorithms.
相关性排序在于根据给定标准对一组对象进行排序。然而,在个性化检索系统中,相关性标准通常可能因不同用户而异,并且可能无法预先定义。在这种情况下,必须设计能够根据用户反馈调整其行为的排序算法。文献中提出了两种主要的学习排序方法:使用通过示例学习的评分函数,该函数评估每个对象基于特征的表示,从而产生绝对相关性分数;成对方法,即学习一个偏好函数来确定在给定对中必须排在首位的对象。在本文中,我们提出了一种用于学习排序的偏好学习方法。一种神经网络,即比较神经网络(CmpNN),通过示例进行训练,以近似一对对象的比较函数。CmpNN采用一种特殊的架构,旨在实现偏好函数中自然存在的对称性。学习到的偏好函数可以作为比较器嵌入到经典排序算法中,以提供一组对象的全局排序。为了提高排序性能,设计了一种主动学习过程,旨在在训练集中选择信息量最大的模式。在LETOR数据集上对所提出的算法进行了评估,与其他现有最先进算法相比,显示出了有前景的性能。