Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA.
IEEE Trans Image Process. 2012 Jun;21(6):2969-79. doi: 10.1109/TIP.2011.2162421. Epub 2011 Jul 18.
We present a geometric framework for explicit derivation of multivariate sampling functions (sinc) on multidimensional lattices. The approach leads to a generalization of the link between sinc functions and the Lagrange interpolation in the multivariate setting. Our geometric approach also provides a frequency partition of the spectrum that leads to a nonseparable extension of the 1-D Shannon (sinc) wavelets to the multivariate setting. Moreover, we propose a generalization of the Lanczos window function that provides a practical and unbiased approach for signal reconstruction on sampling lattices. While this framework is general for lattices of any dimension, we specifically characterize all 2-D and 3-D lattices and show the detailed derivations for 2-D hexagonal body-centered cubic (BCC) and face-centered cubic (FCC) lattices. Both visual and numerical comparisons validate the theoretical expectations about superiority of the BCC and FCC lattices over the commonly used Cartesian lattice.
我们提出了一个用于多维格点上显式推导多元抽样函数(sinc)的几何框架。该方法导致了 sinc 函数与多维情形下 Lagrange 插值之间关系的推广。我们的几何方法还提供了频谱的频率划分,从而将 1-D Shannon(sinc)小波推广到多维情形下的不可分离扩展。此外,我们提出了 Lanczos 窗口函数的推广,为在采样格点上进行信号重建提供了一种实用且无偏的方法。虽然该框架适用于任何维度的格点,但我们特别描述了所有 2-D 和 3-D 格点,并展示了 2-D 六方体心立方(BCC)和面心立方(FCC)格点的详细推导。视觉和数值比较都验证了关于 BCC 和 FCC 格点优于常用笛卡尔格点的理论预期。