Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA.
IEEE Trans Image Process. 2013 Oct;22(10):3950-60. doi: 10.1109/TIP.2013.2265880. Epub 2013 Jun 3.
We examine different sampling lattices and their respective bandlimited spaces for reconstruction of irregularly sampled multidimensional images. Considering an irregularly sampled dataset, we demonstrate that the non-tensor-product bandlimited approximations corresponding to the body-centered cubic and face-centered cubic lattices provide a more accurate reconstruction than the tensor-product bandlimited approximation associated with the commonly-used Cartesian lattice. Our practical algorithm uses multidimensional sinc functions that are tailored to these lattices and a regularization scheme that provides a variational framework for efficient implementation. Using a number of synthetic and real data sets we record improvements in the accuracy of reconstruction in a practical setting.
我们研究了不同的采样晶格及其各自的带限空间,用于重建不规则采样的多维图像。考虑到一个不规则采样的数据集,我们证明了与体心立方和面心立方晶格相对应的非张量积带限逼近比与常用笛卡尔晶格相关的张量积带限逼近提供了更准确的重建。我们的实用算法使用多维 sinc 函数,这些函数是针对这些晶格量身定制的,以及一种正则化方案,为高效实现提供了变分框架。使用一些合成和真实数据集,我们记录了在实际设置中重建精度的提高。