Suppr超能文献

调制抑制强度和动力学可促进脊髓损伤后持续内向电流和运动神经元兴奋性的调节。

Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury.

机构信息

Center for Adaptive Neural Systems, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA.

出版信息

J Neurophysiol. 2011 Nov;106(5):2167-79. doi: 10.1152/jn.00359.2011. Epub 2011 Jul 20.

Abstract

Spasticity is commonly observed after chronic spinal cord injury (SCI) and many other central nervous system disorders (e.g., multiple sclerosis, stroke). SCI-induced spasticity has been associated with motoneuron hyperexcitability partly due to enhanced activation of intrinsic persistent inward currents (PICs). Disrupted spinal inhibitory mechanisms also have been implicated. Altered inhibition can result from complex changes in the strength, kinetics, and reversal potential (E(Cl(-))) of γ-aminobutyric acid A (GABA(A)) and glycine receptor currents. Development of optimal therapeutic strategies requires an understanding of the impact of these interacting factors on motoneuron excitability. We employed computational methods to study the effects of conductance, kinetics, and E(Cl(-)) of a dendritic inhibition on PIC activation and motoneuron discharge. A two-compartment motoneuron with enhanced PICs characteristic of SCI and receiving recurrent inhibition from Renshaw cells was utilized in these simulations. This dendritic inhibition regulated PIC onset and offset and exerted its strongest effects at motoneuron recruitment and in the secondary range of the current-frequency relationship during PIC activation. Increasing inhibitory conductance compensated for moderate depolarizing shifts in E(Cl(-)) by limiting PIC activation and self-sustained firing. Furthermore, GABA(A) currents exerted greater control on PIC activation than glycinergic currents, an effect attributable to their slower kinetics. These results suggest that modulation of the strength and kinetics of GABA(A) currents could provide treatment strategies for uncontrollable spasms.

摘要

痉挛是慢性脊髓损伤(SCI)和许多其他中枢神经系统疾病(如多发性硬化症、中风)后常见的现象。SCI 引起的痉挛与运动神经元过度兴奋有关,部分原因是内在持续内向电流(PICs)的激活增强。破坏的脊髓抑制机制也与之有关。抑制作用的改变可能是由于 GABA A 和甘氨酸受体电流的强度、动力学和反转电位(E(Cl(-)))的复杂变化。开发最佳治疗策略需要了解这些相互作用因素对运动神经元兴奋性的影响。我们采用计算方法研究了树枝状抑制的电导率、动力学和 E(Cl(-))对 PIC 激活和运动神经元放电的影响。这些模拟中使用了具有 SCI 特征的增强 PICs 的双室运动神经元和来自 Renshaw 细胞的复发性抑制。这种树枝状抑制调节了 PIC 的起始和结束,并在 PIC 激活期间在运动神经元募集和电流频率关系的二次范围内发挥最强的作用。增加抑制性电导通过限制 PIC 激活和自维持放电来补偿 E(Cl(-))的适度去极化偏移。此外,GABA A 电流对 PIC 激活的控制作用大于甘氨酸能电流,这归因于它们较慢的动力学。这些结果表明,调节 GABA A 电流的强度和动力学可能为无法控制的痉挛提供治疗策略。

相似文献

引用本文的文献

2
Spinal Cord Injury and Loss of Cortical Inhibition.脊髓损伤和皮质抑制丧失。
Int J Mol Sci. 2022 May 17;23(10):5622. doi: 10.3390/ijms23105622.
6
Chloride dynamics alter the input-output properties of neurons.氯离子动力学改变神经元的输入输出特性。
PLoS Comput Biol. 2020 May 26;16(5):e1007932. doi: 10.1371/journal.pcbi.1007932. eCollection 2020 May.

本文引用的文献

1
Motoneuron model of self-sustained firing after spinal cord injury.脊髓损伤后自发放电的运动神经元模型。
J Comput Neurosci. 2011 Nov;31(3):625-45. doi: 10.1007/s10827-011-0324-1. Epub 2011 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验