Suppr超能文献

线粒体与 NADPH 氧化酶间的串话。

Cross talk between mitochondria and NADPH oxidases.

机构信息

Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

Free Radic Biol Med. 2011 Oct 1;51(7):1289-301. doi: 10.1016/j.freeradbiomed.2011.06.033. Epub 2011 Jul 6.

Abstract

Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of cross talk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain conditions may stimulate NADPH oxidases. This cross talk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production, which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension, and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions.

摘要

活性氧 (ROS) 在生理和病理过程中发挥着重要作用。近年来,人们报道了 ROS 来源的前馈调节。然而,ROS 的主要细胞来源(如线粒体和 NADPH 氧化酶)之间的相互作用仍不清楚。本文总结了线粒体和 NADPH 氧化酶之间相互作用在病理生理过程中的作用的最新发现。线粒体是细胞内抗氧化剂水平最高的细胞器,在维持细胞氧化还原状态方面发挥着重要作用,因此充当 ROS 和氧化还原的汇,并限制 NADPH 氧化酶的活性。然而,线粒体不仅是 NADPH 氧化酶产生的 ROS 的靶标,也是 ROS 的重要来源,在某些条件下,ROS 可能会刺激 NADPH 氧化酶。因此,线粒体和 NADPH 氧化酶之间的这种相互作用可能代表 ROS 产生的前馈恶性循环,在氧化应激条件下可以通过药理学方法靶向该循环。已经证明,靶向线粒体的抗氧化剂可以打破这种恶性循环,抑制线粒体产生 ROS,并降低 NADPH 氧化酶的活性。这可能为包括衰老、动脉粥样硬化、糖尿病、高血压和退行性神经疾病在内的许多病理状况提供一种新的治疗策略,其中线粒体氧化应激似乎发挥作用。可以想象,在这些情况下,使用靶向线粒体的治疗方法将是有效的。

相似文献

1
Cross talk between mitochondria and NADPH oxidases.
Free Radic Biol Med. 2011 Oct 1;51(7):1289-301. doi: 10.1016/j.freeradbiomed.2011.06.033. Epub 2011 Jul 6.
3
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria.
Biomed Pharmacother. 2019 Mar;111:1478-1498. doi: 10.1016/j.biopha.2018.11.128. Epub 2019 Feb 14.
4
Role of mitochondrial oxidative stress in hypertension.
Am J Physiol Heart Circ Physiol. 2013 Nov 15;305(10):H1417-27. doi: 10.1152/ajpheart.00089.2013. Epub 2013 Sep 16.
6
Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):897-906. doi: 10.1016/j.bbabio.2010.01.032. Epub 2010 Feb 1.
9
Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease.
Antioxid Redox Signal. 2013 Oct 1;19(10):1085-94. doi: 10.1089/ars.2012.4604. Epub 2012 May 21.
10
Vascular oxidative stress, nitric oxide and atherosclerosis.
Atherosclerosis. 2014 Nov;237(1):208-19. doi: 10.1016/j.atherosclerosis.2014.09.001. Epub 2014 Sep 9.

引用本文的文献

3
The Role of Mitochondrial Energy Metabolism in the Mechanism of Exercise Improving Depression.
Curr Issues Mol Biol. 2025 May 21;47(5):382. doi: 10.3390/cimb47050382.
4
p66Shc deletion confers apoptotic resistance to loss of EGFR-ERK signalling in neural stem cells.
Cell Death Dis. 2025 Jul 1;16(1):479. doi: 10.1038/s41419-025-07778-8.
5
Measurement of Intracellular Reactive Oxygen Species During Adipogenesis.
Methods Mol Biol. 2025;2938:81-88. doi: 10.1007/978-1-0716-4607-6_9.
8
A Web of Challenges: The Therapeutic Struggle to Target NETs in Disease.
Int J Mol Sci. 2025 May 16;26(10):4773. doi: 10.3390/ijms26104773.
10
Oxidative stress response and NRF2 signaling pathway in autism spectrum disorder.
Redox Biol. 2025 Jun;83:103661. doi: 10.1016/j.redox.2025.103661. Epub 2025 May 2.

本文引用的文献

1
The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4.
J Biol Chem. 2011 Apr 15;286(15):13304-13. doi: 10.1074/jbc.M110.192138. Epub 2011 Feb 22.
2
Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure.
Circ Res. 2011 Apr 1;108(7):837-46. doi: 10.1161/CIRCRESAHA.110.232306. Epub 2011 Feb 10.
3
Systematic review of medical treatment in melanoma: current status and future prospects.
Oncologist. 2011;16(1):5-24. doi: 10.1634/theoncologist.2010-0190. Epub 2011 Jan 6.
5
Redox regulation of the mitochondrial K(ATP) channel in cardioprotection.
Biochim Biophys Acta. 2011 Jul;1813(7):1309-15. doi: 10.1016/j.bbamcr.2010.11.005. Epub 2010 Nov 20.
6
NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18121-6. doi: 10.1073/pnas.1009700107. Epub 2010 Oct 4.
7
Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel.
Circ Res. 2010 Oct 15;107(8):967-74. doi: 10.1161/CIRCRESAHA.110.220673. Epub 2010 Aug 19.
8
NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15565-70. doi: 10.1073/pnas.1002178107. Epub 2010 Aug 16.
9
Mitochondria-targeted antioxidant peptides.
Curr Pharm Des. 2010;16(28):3124-31. doi: 10.2174/138161210793292519.
10
Mitochondria in the diabetic heart.
Cardiovasc Res. 2010 Nov 1;88(2):229-40. doi: 10.1093/cvr/cvq239. Epub 2010 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验