Jr, Section of Cardiology, University of Illinois at Chicago/Jesse Brown VA Medical Center, 840 S Wood St, MC715, Chicago, IL 60612, USA.
Circ Res. 2010 Oct 15;107(8):967-74. doi: 10.1161/CIRCRESAHA.110.220673. Epub 2010 Aug 19.
Pyridine nucleotides regulate the cardiac Na(+) current (I(Na)) through generation of reactive oxygen species (ROS).
We investigated the source of ROS induced by elevated NADH.
In human embryonic kidney (HEK) cells stably expressing the cardiac Na(+) channel, the decrease of I(Na) (52±9%; P<0.01) induced by cytosolic NADH application (100 μmol/L) was reversed by mitoTEMPO, rotenone, malonate, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), PK11195, and 4'-chlorodiazepam, a specific scavenger of mitochondrial superoxide and inhibitors of the mitochondrial complex I, complex II, voltage-dependent anion channels, and benzodiazepine receptor, respectively. Anti-mycin A (20 μmol/L), a complex III inhibitor known to generate ROS, decreased I(Na) (51±4%, P<0.01). This effect was blocked by NAD(+), forskolin, or rotenone. Inhibitors of complex IV, nitric oxide synthase, the NAD(P)H oxidases, xanthine oxidases, the mitochondrial permeability transition pore, and the mitochondrial ATP-sensitive K(+) channel did not change the NADH effect on I(Na). Analogous results were observed in cardiomyocytes. Rotenone, mitoTEMPO, and 4'-chlorodiazepam also blocked the mutant A280V GPD1-L (glycerol-3-phosphate dehydrogenase 1-like) effect on reducing I(Na), indicating a role for mitochondria in the Brugada syndrome caused by this mutation. Fluorescent microscopy confirmed mitochondrial ROS generation with elevated NADH and ROS inhibition by NAD(+).
Altering the oxidized to reduced NAD(H) balance can activate mitochondrial ROS production, leading to reduced I(Na). This signaling cascade may help explain the link between altered metabolism, conduction block, and arrhythmic risk.
吡啶核苷酸通过产生活性氧物质 (ROS) 来调节心脏钠离子电流 (I(Na))。
我们研究了升高的 NADH 诱导的 ROS 的来源。
在稳定表达心脏钠离子通道的人胚肾 (HEK) 细胞中,胞质 NADH 应用 (100 μmol/L) 诱导的 I(Na) 减少 (52±9%;P<0.01) 被 mitoTEMPO、鱼藤酮、丙二酸、DIDS (4,4'-二异硫氰酸基二苯乙烯-2,2'-二磺酸)、PK11195 和 4'-氯二氮䓬阻断,分别为线粒体超氧化物的特异性清除剂和线粒体复合物 I、复合物 II、电压依赖性阴离子通道和苯并二氮䓬受体的抑制剂。已知产生 ROS 的复合物 III 抑制剂抗霉素 A (20 μmol/L) 降低了 I(Na) (51±4%,P<0.01)。这种作用被 NAD(+)、forskolin 或鱼藤酮阻断。复合物 IV、一氧化氮合酶、NAD(P)H 氧化酶、黄嘌呤氧化酶、线粒体通透性转换孔和线粒体 ATP 敏感性钾 (K(+)) 通道抑制剂对 NADH 对 I(Na) 的作用没有影响。在心肌细胞中观察到类似的结果。鱼藤酮、mitoTEMPO 和 4'-氯二氮䓬也阻断了突变 A280V GPD1-L (甘油-3-磷酸脱氢酶 1 样) 对降低 I(Na) 的影响,表明线粒体在由该突变引起的 Brugada 综合征中起作用。荧光显微镜证实了升高的 NADH 引起的线粒体 ROS 产生和 NAD(+) 抑制 ROS。
改变氧化型到还原型 NAD(H) 平衡可以激活线粒体 ROS 产生,导致 I(Na) 减少。这种信号级联反应可能有助于解释代谢改变、传导阻滞和心律失常风险之间的联系。