Division of Neuropaediatrics and Muscular Disorders, Department of Paediatrics and Adolescent Medicine, University Medical Centre Freiburg, Germany.
Brain Stimul. 2011 Jul;4(3):156-64. doi: 10.1016/j.brs.2010.10.002. Epub 2010 Nov 13.
Motor learning takes place in several phases. Animal experiments suggest that synaptic plasticity plays an important role in acquisition of motor skills, whereas retention of motor performance is most likely achieved by other mechanisms.
OBJECTIVE/HYPOTHESIS: This study compared two spacing approaches and investigated the time course of synaptic plasticity after spaced motor practice (MP).
Twenty subjects performed a ballistic thumb flexion task in sessions of 6 × 10 minutes or 12 × 5 minutes. We measured peak acceleration of the target movement throughout the experiment and cortical excitability more than 60 minutes after MP via transcranial magnetic stimulation (TMS). After a retention period, both parameters were re-evaluated.
Mean peak acceleration of the target movement significantly increased (6 × 10 minutes: 21.61 m/s(2) versus 30.80 m/s(2), P = .002; 12 × 5 minutes: 18.52 m/s(2) versus 29.65 m/s(2), P = .01). In both training groups, motor evoked potential (MEP) amplitudes of the trained muscle continuously increased after MP (6 × 10 min: 0.93 mV versus 1.57 mV, P = .19; 12 × 5 min: 0.90 mV versus 1.76 mV, P = .004). After the retention period, motor performance was still significantly enhanced, whereas MEP amplitudes were no longer significantly increased.
These findings do not provide evidence that in small scale motor learning the duration of practice and rest influences behavioral improvement or induction of cortical plasticity. Our study demonstrates that cortical plasticity after MP displays a dynamical time course that might be caused by different mechanisms.
运动学习发生在几个阶段。动物实验表明,突触可塑性在运动技能的获得中起着重要作用,而运动表现的保持则很可能通过其他机制实现。
目的/假设:本研究比较了两种间隔方法,并研究了间隔性运动练习(MP)后突触可塑性的时间过程。
20 名受试者在 6×10 分钟或 12×5 分钟的会话中进行弹丸拇指弯曲任务。我们在整个实验过程中测量目标运动的峰值加速度,并在 MP 后超过 60 分钟通过经颅磁刺激(TMS)测量皮质兴奋性。经过保留期后,重新评估这两个参数。
目标运动的平均峰值加速度显著增加(6×10 分钟:21.61 m/s2 与 30.80 m/s2,P=0.002;12×5 分钟:18.52 m/s2 与 29.65 m/s2,P=0.01)。在两个训练组中,训练肌肉的运动诱发电位(MEP)幅度在 MP 后持续增加(6×10 分钟:0.93 mV 与 1.57 mV,P=0.19;12×5 分钟:0.90 mV 与 1.76 mV,P=0.004)。在保留期后,运动表现仍然显著提高,而 MEP 幅度不再显著增加。
这些发现并没有提供证据表明在小规模运动学习中,练习和休息的时间会影响行为改善或皮质可塑性的诱导。我们的研究表明,MP 后的皮质可塑性显示出动态的时间过程,这可能是由不同的机制引起的。