Center for Health Research, Geisinger Clinic, Danville, PA 17822-4400, USA.
Gen Hosp Psychiatry. 2011 Sep-Oct;33(5):489-500. doi: 10.1016/j.genhosppsych.2011.06.001. Epub 2011 Jul 20.
The objective was to develop a brief posttraumatic stress disorder (PTSD) screening instrument that is useful in clinical practice, similar to the Framingham Risk Score used in cardiovascular medicine.
We used data collected in New York City after the World Trade Center disaster (WTCD) and other trauma data to develop a new PTSD prediction tool--the New York PTSD Risk Score. We used diagnostic test methods to examine different clinical domains, including PTSD symptoms, trauma exposures, sleep disturbances, suicidal thoughts, depression symptoms, demographic factors and other measures to assess different PTSD prediction models.
Using receiver operating curve (ROC) and bootstrap methods, five prediction domains, including core PTSD symptoms, sleep disturbance, access to care status, depression symptoms and trauma history, and five demographic variables, including gender, age, education, race and ethnicity, were identified. For the best prediction model, the area under the ROC curve (AUC) was 0.880 for the Primary Care PTSD Screen alone (specificity=82.2%, sensitivity=93.7%). Adding care status, sleep disturbance, depression and trauma exposure increased the AUC to 0.943 (specificity=85.7%, sensitivity=93.1%), a significant ROC improvement (P<.0001). Adding demographic variables increased the AUC to 0.945, which was not significant (P=.250). To externally validate these models, we applied the WTCD results to 705 pain patients treated at a multispecialty group practice and to 225 trauma patients treated at a Level I Trauma Center. These results validated those from the original WTCD development and validation samples.
The New York PTSD Risk Score is a multifactor prediction tool that includes the Primary Care PTSD Screen, depression symptoms, access to care, sleep disturbance, trauma history and demographic variables and appears to be effective in predicting PTSD among patients seen in healthcare settings. This prediction tool is simple to administer and appears to outperform other screening measures.
旨在开发一种简短的创伤后应激障碍(PTSD)筛查工具,类似于心血管医学中使用的弗雷明汉风险评分。
我们使用了在纽约市世界贸易中心灾难(WTCD)后收集的数据和其他创伤数据,开发了一种新的 PTSD 预测工具——纽约 PTSD 风险评分。我们使用诊断测试方法检查了不同的临床领域,包括 PTSD 症状、创伤暴露、睡眠障碍、自杀念头、抑郁症状、人口统计学因素和其他措施,以评估不同的 PTSD 预测模型。
使用接收者操作特征(ROC)和引导方法,确定了五个预测领域,包括核心 PTSD 症状、睡眠障碍、获得治疗状态、抑郁症状和创伤史,以及五个人口统计学变量,包括性别、年龄、教育程度、种族和民族。对于最佳预测模型,单独使用初级保健 PTSD 筛查(特异性=82.2%,敏感性=93.7%)的 ROC 曲线下面积(AUC)为 0.880。添加治疗状态、睡眠障碍、抑郁和创伤暴露将 AUC 提高到 0.943(特异性=85.7%,敏感性=93.1%),ROC 显著改善(P<.0001)。添加人口统计学变量将 AUC 提高到 0.945,但差异无统计学意义(P=.250)。为了对外验证这些模型,我们将 WTCD 结果应用于在一家多专科实践中治疗的 705 名疼痛患者和在一级创伤中心治疗的 225 名创伤患者。这些结果验证了原始 WTCD 开发和验证样本的结果。
纽约 PTSD 风险评分是一种多因素预测工具,包括初级保健 PTSD 筛查、抑郁症状、获得治疗机会、睡眠障碍、创伤史和人口统计学变量,似乎可有效预测医疗保健环境中患者的 PTSD。该预测工具易于管理,似乎优于其他筛查措施。