Suppr超能文献

血液流变学与微血管障碍。

Hemorheology and microvascular disorders.

机构信息

Department of Mechanical Engineering and Mechanics, Drexel University Philadelphia, PA, USA.

出版信息

Korean Circ J. 2011 Jun;41(6):287-95. doi: 10.4070/kcj.2011.41.6.287. Epub 2011 Jun 30.

Abstract

The present review presents basic concepts of blood rheology related to vascular diseases. Blood flow in large arteries is dominated by inertial forces exhibited at high flow velocities, while viscous forces (i.e., blood rheology) play an almost negligible role. When high flow velocity is compromised by sudden deceleration as at a bifurcation, endothelial cell dysfunction can occur along the outer wall of the bifurcation, initiating inflammatory gene expression and, through mechanotransduction, the cascade of events associated with atherosclerosis. In sharp contrast, the flow of blood in microvessels is dominated by viscous shear forces since the inertial forces are negligible due to low flow velocities. Shear stress is a critical parameter in microvascular flow, and a force-balance approach is proposed for determining microvascular shear stress, accounting for the low Reynolds numbers and the dominance of viscous forces over inertial forces. Accordingly, when the attractive forces between erythrocytes (represented by the yield stress of blood) are greater than the shear force produced by microvascular flow, tissue perfusion itself cannot be sustained, leading to capillary loss. The yield stress parameter is presented as a diagnostic candidate for future clinical research, specifically, as a fluid dynamic biomarker for microvascular disorders. The relation between the yield stress and diastolic blood viscosity (DBV) is described using the Casson model for viscosity, from which one may be able determine thresholds of DBV where the risk of microvascular disorders is high.

摘要

本篇综述介绍了与血管疾病相关的血液流变学基本概念。在大动脉中,血流主要受高速时表现出的惯性力支配,而粘性力(即血液流变学)的作用可以忽略不计。当高速流动因分叉处的突然减速而受到限制时,分叉处外壁处的内皮细胞功能可能会发生障碍,从而引发炎症基因表达,并通过机械转导,引发与动脉粥样硬化相关的一系列事件。与此形成鲜明对比的是,由于血流速度低,微血管中的血液流动主要受粘性剪切力支配,惯性力可以忽略不计。切应力是微血管流动中的一个关键参数,本文提出了一种用于确定微血管切应力的力平衡方法,该方法考虑了低雷诺数和粘性力对惯性力的主导作用。因此,当红细胞之间的吸引力(以血液的屈服应力来表示)大于微血管流动产生的切应力时,组织灌注本身就无法维持,导致毛细血管丧失。屈服应力参数被提出作为未来临床研究的诊断候选指标,特别是作为微血管疾病的流体动力生物标志物。使用粘度的 Casson 模型来描述屈服应力与舒张压粘度(DBV)之间的关系,从中可以确定 DBV 的阈值,在此阈值下,微血管疾病的风险很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1812/3132688/36eaf8f49545/kcj-41-287-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验