Suppr超能文献

将水热地球化学与生物生理学联系起来:来自沉积物和玄武岩宿主喷口的 Riftia pachyptila 的生理多样性。

Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents.

机构信息

University of California Santa Cruz, Department of Ocean Sciences, Santa Cruz, California, United States of America.

出版信息

PLoS One. 2011;6(7):e21692. doi: 10.1371/journal.pone.0021692. Epub 2011 Jul 14.

Abstract

Much of what is known regarding Riftia pachyptila physiology is based on the wealth of studies of tubeworms living at diffuse flows along the fast-spreading, basalt-hosted East Pacific Rise (EPR). These studies have collectively suggested that Riftia pachyptila and its chemoautotrophic symbionts are physiologically specialized, highly productive associations relying on hydrogen sulfide and oxygen to generate energy for carbon fixation, and the symbiont's nitrate reduction to ammonia for energy and biosynthesis. However, Riftia also flourish in sediment-hosted vents, which are markedly different in geochemistry than basalt-hosted systems. Here we present data from shipboard physiological studies and global quantitative proteomic analyses of Riftia pachyptila trophosome tissue recovered from tubeworms residing in the EPR and the Guaymas basin, a sedimented, hydrothermal vent field. We observed marked differences in symbiont nitrogen metabolism in both the respirometric and proteomic data. The proteomic data further suggest that Riftia associations in Guaymas may utilize different sulfur compounds for energy generation, may have an increased capacity for energy storage, and may play a role in degrading exogenous organic carbon. Together these data reveal that Riftia symbionts are far more physiologically plastic than previously considered, and that--contrary to previous assertions--Riftia do assimilate reduced nitrogen in some habitats. These observations raise new hypotheses regarding adaptations to the geochemical diversity of habitats occupied by Riftia, and the degree to which the environment influences symbiont physiology and evolution.

摘要

关于深海巨蛤生理机能的大部分知识,都来源于对东太平洋海隆(East Pacific Rise,简称 EPR)大量热液弥散流中生活的管虫的研究。这些研究共同表明,深海巨蛤及其化能自养共生体在生理上是高度特化的,是高效的共生组合,依靠硫化氢和氧气来为碳固定产生能量,并依靠共生体的硝酸盐还原为氨来产生能量和进行生物合成。然而,深海巨蛤也在沉积物热液喷口繁盛,这些喷口在地球化学上与玄武岩热液系统有明显的不同。在这里,我们展示了来自船舶生理研究的数据和全球定量蛋白质组学分析的深海巨蛤营养体组织的结果,这些组织是从生活在 EPR 和古马雅盆地(Guaymas basin)的管虫中回收的。古马雅盆地是一个沉积的热液喷口区域。我们在呼吸计和蛋白质组学数据中都观察到共生体氮代谢的明显差异。蛋白质组学数据进一步表明,古马雅盆地的深海巨蛤共生体可能利用不同的硫化合物来产生能量,可能具有更高的能量储存能力,并且可能在降解外源有机碳方面发挥作用。这些数据共同表明,深海巨蛤共生体的生理可塑性比以前认为的要大得多,而且——与以前的断言相反——深海巨蛤在某些栖息地确实会同化还原态氮。这些观察结果提出了关于深海巨蛤适应其栖息地的地球化学多样性的新假设,以及环境对共生体生理和进化的影响程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c50/3136470/6a4b1d6badf8/pone.0021692.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验