Park Kwang Bum, Jeong Young-Li, Choi Ki Choon, Kim Su Gwan, Kim Hak Kyun
Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Kwangju 501-759, Korea.
J Nanosci Nanotechnol. 2011 May;11(5):4240-9. doi: 10.1166/jnn.2011.3637.
In this study, we prepared adriamycin (ADR)-encapsulated nanoparticles using deoxycholic acid-conjugated dextran (DexDA). Its antitumor activity was evaluated using CT 26 tumor cells in vitro and in vivo. ADR-incorporated DexDA nanoparticles have spherical shapes and their particle sizes were ranged about 50-200. Their particle sizes were changed according to the preparation conditions, i.e., the higher substitution degree (DS) of deoxycholic acid (DA) and higher drug feeding ratio induced increased particle size and zeta potential. Furthermore, the higher DS of DA and higher drug feeding ratio induced increased drug contents and loading efficiency of drug. The higher DS of DA and higher drug feeding ratio induced decreased drug release rate. Futhermore, acidic pH of release media accelerated the drug release rate compared to alkaline pH. At in vitro cytotoxicity test using CT26 tumor cells, the nanoparticles showed higher antitumor activity than free ADR. In fluorescence microscopic observation, nanoparticles were properly entered into tumors cells and maintained in the cells compared to ADR itself. At in vivo animal tumor model using CT-26 cells, nanoparticles resulted in survivability increase of mice even though free ADR showed higher effectiveness to inhibit tumor growth. These results suggested that ADR-incorporated DexDA nanoparticles are promising vehicles for anti-tumor drug delivery.