Institute for Genome Sciences and Policy, Duke University, 101 Science Drive, Durham, NC 27710, USA.
BMC Med Genomics. 2011 Jul 22;4:61. doi: 10.1186/1755-8794-4-61.
Transgenic mouse tumor models have the advantage of facilitating controlled in vivo oncogenic perturbations in a common genetic background. This provides an idealized context for generating transcriptome-based diagnostic models while minimizing the inherent noisiness of high-throughput technologies. However, the question remains whether models developed in such a setting are suitable prototypes for useful human diagnostics. We show that latent factor modeling of the peripheral blood transcriptome in a mouse model of breast cancer provides the basis for using computational methods to link a mouse model to a prototype human diagnostic based on a common underlying biological response to the presence of a tumor.
We used gene expression data from mouse peripheral blood cell (PBC) samples to identify significantly differentially expressed genes using supervised classification and sparse ANOVA. We employed these transcriptome data as the starting point for developing a breast tumor predictor from human peripheral blood mononuclear cells (PBMCs) by using a factor modeling approach.
The predictor distinguished breast cancer patients from healthy individuals in a cohort of patients independent from that used to build the factors and train the model with 89% sensitivity, 100% specificity and an area under the curve (AUC) of 0.97 using Youden's J-statistic to objectively select the model's classification threshold. Both permutation testing of the model and evaluating the model strategy by swapping the training and validation sets highlight its stability.
We describe a human breast tumor predictor based on the gene expression of mouse PBCs. This strategy overcomes many of the limitations of earlier studies by using the model system to reduce noise and identify transcripts associated with the presence of a breast tumor over other potentially confounding factors. Our results serve as a proof-of-concept for using an animal model to develop a blood-based diagnostic, and it establishes an experimental framework for identifying predictors of solid tumors, not only in the context of breast cancer, but also in other types of cancer.
转基因小鼠肿瘤模型具有在共同遗传背景下进行体内致癌性干扰的优势。这为生成基于转录组的诊断模型提供了理想的环境,同时最大限度地减少了高通量技术固有的噪声。然而,问题仍然是在这种环境下开发的模型是否适合用于有用的人类诊断。我们表明,乳腺癌小鼠模型外周血转录组的潜在因子建模为使用计算方法将小鼠模型与基于肿瘤存在的共同潜在生物学反应的原型人类诊断联系起来提供了基础。
我们使用来自小鼠外周血细胞(PBC)样本的基因表达数据,使用有监督分类和稀疏方差分析来识别显著差异表达的基因。我们将这些转录组数据用作从人类外周血单核细胞(PBMC)中开发乳腺癌肿瘤预测器的起点,使用因子建模方法。
该预测器在独立于建立因子和训练模型的患者队列中,使用 Youden 的 J 统计量客观地选择模型的分类阈值,以 89%的灵敏度、100%的特异性和 0.97 的曲线下面积(AUC)将乳腺癌患者与健康个体区分开来。模型的置换检验和通过交换训练集和验证集评估模型策略都突出了其稳定性。
我们描述了一种基于小鼠 PBC 基因表达的人类乳腺癌肿瘤预测器。这种策略通过使用模型系统来减少噪声并识别与乳腺癌存在相关的转录本,克服了早期研究的许多局限性,而不是其他潜在的混杂因素。我们的结果为使用动物模型开发基于血液的诊断提供了概念验证,并为识别实体瘤的预测因子建立了实验框架,不仅在乳腺癌的背景下,而且在其他类型的癌症中也是如此。