Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India.
J Hazard Mater. 2011 Sep 15;192(3):1539-47. doi: 10.1016/j.jhazmat.2011.06.074. Epub 2011 Jul 1.
Surface engineered magnetic nanoparticles (Fe(3)O(4)) were synthesized by facile soft-chemical approaches. XRD and TEM analyses reveal the formation of single-phase Fe(3)O(4) inverse spinel nanostructures. The functionalization of Fe(3)O(4) nanoparticles with carboxyl (succinic acid), amine (ethylenediamine) and thiol (2,3-dimercaptosuccinic acid) were evident from FTIR spectra, elemental analysis and zeta-potential measurements. From TEM micrographs, it has been observed that nanoparticles of average sizes about 10 and 6 nm are formed in carboxyl and thiol functionalized Fe(3)O(4), respectively. However, each amine functionalized Fe(3)O(4) is of size ~40 nm comprising numerous nanoparticles of average diameter 6 nm. These nanoparticles show superparamagnetic behavior at room temperature with strong field dependent magnetic responsivity. We have explored the efficiency of these nanoparticles for removal of toxic metal ions (Cr(3+), Co(2+), Ni(2+), Cu(2+), Cd(2+), Pb(2+) and As(3+)) and bacterial pathogens (Escherichia coli) from water. Depending upon the surface functionality (COOH, NH(2) or SH), magnetic nanoadsorbents capture metal ions either by forming chelate complexes or ion exchange process or electrostatic interaction. It has been observed that the capture efficiency of bacteria is strongly dependent on the concentration of nanoadsorbents and their inoculation time. Furthermore, these nanoadsorbents can be used as highly efficient separable and reusable materials for removal of toxic metal ions.
通过简便的软化学方法合成了表面功能化的磁性纳米粒子(Fe(3)O(4))。XRD 和 TEM 分析表明,形成了单相 Fe(3)O(4)反尖晶石纳米结构。FTIR 光谱、元素分析和zeta 电位测量表明 Fe(3)O(4)纳米粒子已成功功能化羧基(琥珀酸)、胺(乙二胺)和硫醇(2,3-二巯基丁二酸)。从 TEM 显微照片中可以看出,在羧基和硫醇功能化的 Fe(3)O(4)中分别形成了平均粒径约为 10 和 6nm 的纳米粒子。然而,每个胺功能化的 Fe(3)O(4)的尺寸约为 40nm,包含许多平均直径为 6nm 的纳米粒子。这些纳米粒子在室温下表现出超顺磁性,具有强场依赖的磁响应性。我们探索了这些纳米粒子从水中去除有毒金属离子(Cr(3+)、Co(2+)、Ni(2+)、Cu(2+)、Cd(2+)、Pb(2+)和 As(3+))和细菌病原体(大肠杆菌)的效率。根据表面功能(COOH、NH(2)或 SH),磁性纳米吸附剂通过形成螯合配合物或离子交换过程或静电相互作用来捕获金属离子。观察到细菌的捕获效率强烈依赖于纳米吸附剂的浓度和接种时间。此外,这些纳米吸附剂可用作高效的可分离和可重复使用的材料,用于去除有毒金属离子。