Suppr超能文献

原纤维蛋白-1 中的经典型和新生儿马凡综合征突变导致不同的蛋白酶敏感性和蛋白功能。

Classical and neonatal Marfan syndrome mutations in fibrillin-1 cause differential protease susceptibilities and protein function.

机构信息

Faculty of Dentistry, Division of Biomedical Sciences, Faculty of Medicine, McGill University, Montreal H3A 2B2, Canada.

出版信息

J Biol Chem. 2011 Sep 16;286(37):32810-23. doi: 10.1074/jbc.M111.221804. Epub 2011 Jul 22.

Abstract

Mutations in fibrillin-1 give rise to Marfan syndrome (MFS) characterized by vascular, skeletal, and ocular abnormalities. Fibrillins form the backbone of extracellular matrix microfibrils in tissues including blood vessels, bone, and skin. They are crucial for regulating elastic fiber biogenesis and growth factor bioavailability. To compare the molecular consequences of mutations causing the severe neonatal MFS with mutations causing the milder classical MFS, we introduced representative point mutations from each group in a recombinant human fibrillin-1 fragment. Structural effects were analyzed by circular dichroism spectroscopy and analytical gel filtration chromatography. Proteolytic susceptibility was probed with non-physiological and physiological proteases, including plasmin, thrombin, matrix metalloproteinases, and cathepsins. All mutant proteins showed a similar gross secondary structure and no differences in heat stability as compared with the wild-type protein. Proteins harboring neonatal mutations were typically more susceptible to proteolytic cleavage compared with those with classical mutations and the wild-type protein. Proteolytic neo-cleavage sites were found both in close proximity and distant to the mutations, indicating small but significant structural changes exposing cryptic cleavage sites. We also report for the first time that cathepsin K and V cleave non-mutated fibrillin-1 at several domain boundaries. Compared with the classical mutations and the wild type, the group of neonatal mutations more severely affected the ability of fibrillin-1 to interact with heparin/heparan sulfate, which plays a role in microfibril assembly. These results suggest differential molecular pathogenetic concepts for neonatal and classical MFS including enhanced proteolytic susceptibility for physiologically relevant enzymes and loss of function for heparin binding.

摘要

原纤维蛋白-1 中的突变导致马凡综合征(MFS),其特征为血管、骨骼和眼部异常。原纤维蛋白构成了包括血管、骨骼和皮肤在内的组织中细胞外基质微纤维的骨架。它们对于调节弹性纤维的生物发生和生长因子的生物利用度至关重要。为了比较导致严重新生儿 MFS 的突变和导致较轻的经典 MFS 的突变的分子后果,我们将每组中的代表性点突变引入重组人原纤维蛋白-1 片段中。通过圆二色性光谱和分析凝胶过滤色谱分析结构效应。用非生理和生理蛋白酶(包括纤溶酶、凝血酶、基质金属蛋白酶和组织蛋白酶)探测蛋白水解的易感性。与野生型蛋白相比,所有突变蛋白均显示出相似的总体二级结构,且热稳定性无差异。与经典突变和野生型蛋白相比,携带新生儿突变的蛋白通常更容易被蛋白水解切割。在靠近突变和远离突变的位置都发现了蛋白水解的新切割位点,表明存在微小但显著的结构变化,暴露出隐藏的切割位点。我们还首次报道组织蛋白酶 K 和 V 在几个结构域边界切割非突变原纤维蛋白-1。与经典突变和野生型相比,新生儿突变组更严重地影响了原纤维蛋白-1与肝素/硫酸乙酰肝素相互作用的能力,这在微纤维组装中起作用。这些结果表明,新生儿和经典 MFS 的分子发病机制概念存在差异,包括对生理相关酶的蛋白水解易感性增强和肝素结合功能丧失。

相似文献

1
Classical and neonatal Marfan syndrome mutations in fibrillin-1 cause differential protease susceptibilities and protein function.
J Biol Chem. 2011 Sep 16;286(37):32810-23. doi: 10.1074/jbc.M111.221804. Epub 2011 Jul 22.
2
Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.
Mutat Res Rev Mutat Res. 2015 Jul-Sep;765:7-18. doi: 10.1016/j.mrrev.2015.04.002. Epub 2015 May 5.
4
Microenvironmental regulation by fibrillin-1.
PLoS Genet. 2012 Jan;8(1):e1002425. doi: 10.1371/journal.pgen.1002425. Epub 2012 Jan 5.
6
The molecular pathogenesis of the Marfan syndrome.
Cell Mol Life Sci. 2001 Oct;58(11):1698-707. doi: 10.1007/pl00000807.
7
Fibrillin-rich microfibrils: Structural determinants of morphogenetic and homeostatic events.
J Cell Physiol. 2007 Nov;213(2):326-30. doi: 10.1002/jcp.21189.
9
10

引用本文的文献

1
Marfan syndrome variation of the POGLUT2 and POGLUT3 consensus sequence can produce aberrant fibrillin-1 O-glucosylation.
J Biol Chem. 2025 May;301(5):108411. doi: 10.1016/j.jbc.2025.108411. Epub 2025 Mar 17.
2
Causative role of a novel intronic indel variant in FBN1 and maternal germinal mosaicism in Marfan syndrome.
Orphanet J Rare Dis. 2024 May 21;19(1):209. doi: 10.1186/s13023-024-03139-4.
3
Macromolecular crowding in human tenocyte and skin fibroblast cultures: A comparative analysis.
Mater Today Bio. 2024 Jan 28;25:100977. doi: 10.1016/j.mtbio.2024.100977. eCollection 2024 Apr.
4
Plasmin-Induced Lens Epithelial Cells Detachment for the Reduction of Posterior Capsular Opacification.
Transl Vis Sci Technol. 2023 Apr 3;12(4):23. doi: 10.1167/tvst.12.4.23.
5
The fibrillinopathies: New insights with focus on the paradigm of opposing phenotypes for both FBN1 and FBN2.
Hum Mutat. 2022 Jul;43(7):815-831. doi: 10.1002/humu.24383. Epub 2022 Apr 28.
6
7
POGLUT2 and POGLUT3 O-glucosylate multiple EGF repeats in fibrillin-1, -2, and LTBP1 and promote secretion of fibrillin-1.
J Biol Chem. 2021 Sep;297(3):101055. doi: 10.1016/j.jbc.2021.101055. Epub 2021 Aug 17.
8
Assembly assay identifies a critical region of human fibrillin-1 required for 10-12 nm diameter microfibril biogenesis.
PLoS One. 2021 Mar 18;16(3):e0248532. doi: 10.1371/journal.pone.0248532. eCollection 2021.
9
Severe neonatal Marfan syndrome with a novel mutation in the intron of the FBN1 gene: A case report.
Medicine (Baltimore). 2021 Feb 12;100(6):e24301. doi: 10.1097/MD.0000000000024301.
10
A nonsense variant in FBN1 caused autosomal dominant Marfan syndrome in a Chinese family: a case report.
BMC Med Genet. 2020 Oct 21;21(1):211. doi: 10.1186/s12881-020-01148-1.

本文引用的文献

1
Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome.
Sci Transl Med. 2010 Mar 17;2(23):23ra20. doi: 10.1126/scitranslmed.3000488.
2
Extracellular microfibrils: contextual platforms for TGFbeta and BMP signaling.
Curr Opin Cell Biol. 2009 Oct;21(5):616-22. doi: 10.1016/j.ceb.2009.05.005. Epub 2009 Jun 12.
3
Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.
J Biol Chem. 2009 Jan 23;284(4):2584-92. doi: 10.1074/jbc.M805280200. Epub 2008 Nov 21.
4
Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation.
Eur J Hum Genet. 2009 Apr;17(4):491-501. doi: 10.1038/ejhg.2008.207. Epub 2008 Nov 12.
5
Angiotensin II blockade and aortic-root dilation in Marfan's syndrome.
N Engl J Med. 2008 Jun 26;358(26):2787-95. doi: 10.1056/NEJMoa0706585.
6
Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1 C terminus into bead-like structures enables self-assembly.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6548-53. doi: 10.1073/pnas.0706335105. Epub 2008 Apr 30.
7
Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice.
Atherosclerosis. 2008 Sep;200(1):58-68. doi: 10.1016/j.atherosclerosis.2007.12.047. Epub 2008 Mar 4.
8
New insights into elastic fiber assembly.
Birth Defects Res C Embryo Today. 2007 Dec;81(4):229-40. doi: 10.1002/bdrc.20111.
10
Fibrillin-1 regulates the bioavailability of TGFbeta1.
J Cell Biol. 2007 Jan 29;176(3):355-67. doi: 10.1083/jcb.200608167. Epub 2007 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验