Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1360-8. doi: 10.1152/ajpheart.00406.2011. Epub 2011 Jul 22.
Physiological functions of arterial smooth muscle cell ATP-sensitive K(+) (K(ATP)) channels, which are composed of inwardly rectifying K(+) channel 6.1 and sulfonylurea receptor (SUR)-2 subunits, during metabolic inhibition are unresolved. In the present study, we used a genetic model to investigate the physiological functions of SUR2-containing K(ATP) channels in mediating vasodilation to hypoxia, oxygen and glucose deprivation (OGD) or metabolic inhibition, and functional recovery following these insults. Data indicate that SUR2B is the only SUR isoform expressed in murine cerebral artery smooth muscle cells. Pressurized SUR2 wild-type (SUR2(wt)) and SUR2 null (SUR2(nl)) mouse cerebral arteries developed similar levels of myogenic tone and dilated similarly to hypoxia (<10 mmHg Po(2)). In contrast, vasodilation induced by pinacidil, a K(ATP) channel opener, was ∼71% smaller in SUR2(nl) arteries. Human cerebral arteries also expressed SUR2B, developed myogenic tone, and dilated in response to hypoxia and pinacidil. OGD, oligomycin B (a mitochondrial ATP synthase blocker), and CCCP (a mitochondrial uncoupler) all induced vasodilations that were ∼39-61% smaller in SUR2(nl) than in SUR2(wt) arteries. The restoration of oxygen and glucose following OGD or removal of oligomycin B and CCCP resulted in partial recovery of tone in both SUR2(wt) and SUR2(nl) cerebral arteries. However, SUR(nl) arteries regained ∼60-82% more tone than did SUR2(wt) arteries. These data indicate that SUR2-containing K(ATP) channels are functional molecular targets for OGD, but not hypoxic, vasodilation in cerebral arteries. In addition, OGD activation of SUR2-containing K(ATP) channels may contribute to postischemic loss of myogenic tone.
动脉平滑肌细胞 ATP 敏感性钾 (KATP) 通道的生理功能在代谢抑制时仍未得到解决,该通道由内向整流钾 (K) 通道 6.1 和磺酰脲受体 (SUR)-2 亚基组成。在本研究中,我们使用基因模型来研究 SUR2 包含的 KATP 通道在介导低氧、缺氧和葡萄糖剥夺 (OGD) 或代谢抑制时的血管舒张,以及这些损伤后的功能恢复中的生理功能。数据表明,SUR2B 是在小鼠脑血管平滑肌细胞中表达的唯一 SUR 同工型。加压 SUR2 野生型 (SUR2(wt)) 和 SUR2 缺失型 (SUR2(nl)) 小鼠脑血管产生相似水平的肌源性张力,并对低氧 (<10 mmHg Po(2)) 产生相似的舒张反应。相比之下,SUR2(nl) 血管中 KATP 通道开放剂吡那地尔诱导的血管舒张作用小了约 71%。人脑血管也表达 SUR2B,对低氧和吡那地尔产生肌源性张力和舒张反应。OGD、寡霉素 B(一种线粒体 ATP 合酶抑制剂)和 CCCP(一种线粒体解偶联剂)均诱导血管舒张,SUR2(nl) 血管的舒张作用比 SUR2(wt) 血管小了约 39-61%。OGD 后恢复氧气和葡萄糖,或移除寡霉素 B 和 CCCP,可使 SUR2(wt) 和 SUR2(nl) 脑血管的张力部分恢复。然而,SUR(nl) 血管恢复的张力比 SUR2(wt) 血管多了约 60-82%。这些数据表明,SUR2 包含的 KATP 通道是大脑血管中 OGD 而不是低氧性血管舒张的功能性分子靶点。此外,OGD 激活 SUR2 包含的 KATP 通道可能导致缺血后肌源性张力丧失。