Jack and Eileen Connors Structural Biology Laboratory, Harvard Medical School, Boston, Massachusetts 02115, USA.
Nature. 2011 Jul 24;476(7358):109-13. doi: 10.1038/nature10257.
Mitochondrial uncoupling protein 2 (UCP2) is an integral membrane protein in the mitochondrial anion carrier protein family, the members of which facilitate the transport of small molecules across the mitochondrial inner membrane. When the mitochondrial respiratory complex pumps protons from the mitochondrial matrix to the intermembrane space, it builds up an electrochemical potential. A fraction of this electrochemical potential is dissipated as heat, in a process involving leakage of protons back to the matrix. This leakage, or 'uncoupling' of the proton electrochemical potential, is mediated primarily by uncoupling proteins. However, the mechanism of UCP-mediated proton translocation across the lipid bilayer is unknown. Here we describe a solution-NMR method for structural characterization of UCP2. The method, which overcomes some of the challenges associated with membrane-protein structure determination, combines orientation restraints derived from NMR residual dipolar couplings (RDCs) and semiquantitative distance restraints from paramagnetic relaxation enhancement (PRE) measurements. The local and secondary structures of the protein were determined by piecing together molecular fragments from the Protein Data Bank that best fit experimental RDCs from samples weakly aligned in a DNA nanotube liquid crystal. The RDCs also determine the relative orientation of the secondary structural segments, and the PRE restraints provide their spatial arrangement in the tertiary fold. UCP2 closely resembles the bovine ADP/ATP carrier (the only carrier protein of known structure), but the relative orientations of the helical segments are different, resulting in a wider opening on the matrix side of the inner membrane. Moreover, the nitroxide-labelled GDP binds inside the channel and seems to be closer to transmembrane helices 1-4. We believe that this biophysical approach can be applied to other membrane proteins and, in particular, to other mitochondrial carriers, not only for structure determination but also to characterize various conformational states of these proteins linked to substrate transport.
线粒体解偶联蛋白 2(UCP2)是线粒体阴离子载体蛋白家族的一种完整膜蛋白,其成员促进小分子穿过线粒体内膜的运输。当线粒体呼吸复合物将质子从线粒体基质泵入膜间空间时,会建立一个电化学势。这个电化学势的一部分会以热量的形式耗散,这个过程涉及质子回冲到基质的渗漏。这种渗漏或质子电化学势的“解偶联”主要由解偶联蛋白介导。然而,UCP 介导的质子跨脂质双层转运的机制尚不清楚。在这里,我们描述了一种用于 UCP2 结构特征描述的溶液 NMR 方法。该方法克服了与膜蛋白结构测定相关的一些挑战,结合了来自 NMR 残差偶极耦合(RDC)的取向约束和来自顺磁弛豫增强(PRE)测量的半定量距离约束。通过将最适合在 DNA 纳米管液晶中弱定向的样品的实验 RDC 拼接成来自蛋白质数据库的分子片段,确定了蛋白质的局部和二级结构。RDC 还确定了二级结构片段的相对取向,并且 PRE 约束提供了它们在三级折叠中的空间排列。UCP2 非常类似于牛 ADP/ATP 载体(唯一具有已知结构的载体蛋白),但螺旋片段的相对取向不同,导致内膜基质侧的开口更宽。此外,标记有氮氧自由基的 GDP 结合在通道内,并且似乎更靠近跨膜螺旋 1-4。我们相信这种生物物理方法可以应用于其他膜蛋白,特别是其他线粒体载体,不仅可以用于结构测定,还可以用于表征与底物运输相关的这些蛋白质的各种构象状态。