Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria.
Int J Mol Sci. 2021 Jan 26;22(3):1214. doi: 10.3390/ijms22031214.
Molecular dynamics (MD) simulations of uncoupling proteins (UCP), a class of transmembrane proteins relevant for proton transport across inner mitochondrial membranes, represent a complicated task due to the lack of available structural data. In this work, we use a combination of homology modelling and subsequent microsecond molecular dynamics simulations of UCP2 in the DOPC phospholipid bilayer, starting from the structure of the mitochondrial ATP/ADP carrier (ANT) as a template. We show that this protocol leads to a structure that is impermeable to water, in contrast to MD simulations of UCP2 structures based on the experimental NMR structure. We also show that ATP binding in the UCP2 cavity is tight in the homology modelled structure of UCP2 in agreement with experimental observations. Finally, we corroborate our results with conductance measurements in model membranes, which further suggest that the UCP2 structure modeled from ANT protein possesses additional key functional elements, such as a fatty acid-binding site at the R60 region of the protein, directly related to the proton transport mechanism across inner mitochondrial membranes.
解偶联蛋白 (UCP) 的分子动力学 (MD) 模拟是一项复杂的任务,因为缺乏可用的结构数据。在这项工作中,我们使用同源建模和随后的 UCP2 在 DOPC 磷脂双层中的微秒分子动力学模拟的组合,从线粒体 ATP/ADP 载体 (ANT) 的结构作为模板。我们表明,与基于实验 NMR 结构的 UCP2 结构的 MD 模拟相比,该方案导致了一种对水不可渗透的结构。我们还表明,在同源建模的 UCP2 结构中,ATP 在 UCP2 腔中的结合是紧密的,这与实验观察结果一致。最后,我们用模型膜中的电导率测量来证实我们的结果,这进一步表明,从 ANT 蛋白建模的 UCP2 结构具有额外的关键功能元素,例如位于蛋白质 R60 区域的脂肪酸结合位点,这与质子穿过线粒体内膜的运输机制直接相关。