Mycology Reference Centre, Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
Bone Marrow Transplant. 2012 Jul;47(7):881-94. doi: 10.1038/bmt.2011.146. Epub 2011 Jul 25.
Treatment or prophylaxis of invasive fungal infection in recipients of haemopoietic SCT (HSCT) may require management of coexistent malnutrition, organ dysfunction and GVHD, all of which create added potential for inter- and intra-patient variations in drug metabolism as well as drug interactions. Polymorphism is common in genes encoding pathway components of antifungal drug metabolism such as enzymes (cytochrome P450 (CYP450), glutathione S-transferase, N-acetyltransferase and uridine 5'-diphospho-glucuronosyltransferase), uptake transporters (organic cationic transporter, novel organic cationic transporter, organic anion transporter protein (OATP), organic anion transport (OAT), and peptide tranporter) and efflux transporters (breast cancer resistance protein, bile sale export pump (BSEP), multidrug and toxin extrusion type transporter, multidrug resistance protein (MRP), OAT, permeability glycoprotein (P-gp), and urate transporter). Specific polymorphisms may be generalised throughout a population or largely confined to ethnic groups. CYP450 enzymes, especially 2C9 and 2C19, exhibit extensive polymorphism and are central to the metabolism of azole antifungals and their interactions with other drugs including calcineurin inhibitors, cytotoxics and benzodiazepines. Polymorphism may ultimately affect drug efficacy: CYP2C19 variation leads to a fivefold variation in voriconazole levels between individuals. Anticipated routine provision of pharmacogenomic data in the future for new drugs, together with accumulating knowledge about established agents, challenge physicians to assimilate and apply that information to drug prescribing. Increasing availability of pharmacogenomic data may strengthen demand for rapid turn-around therapeutic drug monitoring of antifungal agents in HSCT recipients.
造血干细胞移植(HSCT)受者侵袭性真菌感染的治疗或预防可能需要同时治疗共存的营养不良、器官功能障碍和移植物抗宿主病,所有这些都会增加药物代谢以及药物相互作用的个体内和个体间差异的潜在风险。抗真菌药物代谢途径成分的编码基因(细胞色素 P450(CYP450)、谷胱甘肽 S-转移酶、N-乙酰基转移酶和尿苷 5′-二磷酸葡萄糖醛酸转移酶)、摄取转运体(有机阳离子转运体、新型有机阳离子转运体、有机阴离子转运蛋白(OATP)、有机阴离子转运(OAT)和肽转运体)和外排转运体(乳腺癌耐药蛋白、胆汁盐出口泵(BSEP)、多药和毒素外排转运体、多药耐药蛋白(MRP)、OAT、通透性糖蛋白(P-gp)和尿酸转运体)中,多态性很常见。特定的多态性可能在整个人群中普遍存在,也可能主要局限于特定种族。CYP450 酶,尤其是 2C9 和 2C19,表现出广泛的多态性,是唑类抗真菌药物及其与其他药物(包括钙调神经磷酸酶抑制剂、细胞毒性药物和苯二氮䓬类药物)相互作用的代谢的关键。多态性最终可能会影响药物的疗效:CYP2C19 变异导致伏立康唑个体间水平差异达五倍。未来,预计新药物将常规提供药物基因组学数据,再加上对现有药物的认识不断积累,这都要求医生吸收并将这些信息应用于药物处方。药物基因组学数据的日益普及可能会加强对 HSCT 受者抗真菌药物进行快速治疗药物监测的需求。