Suppr超能文献

软骨MRI的自动化图像处理与分析:应用于骨关节炎数据挖掘的使能技术

Automated image processing and analysis of cartilage MRI: enabling technology for data mining applied to osteoarthritis.

作者信息

Tameem Hussain Z, Sinha Usha S

机构信息

Department of Biomedical Engineering, University of California, Los Angeles, 7523 Boelter Hall, Los Angeles, CA 90024 USA.

出版信息

AIP Conf Proc. 2007;953:262-276. doi: 10.1063/1.2817349.

Abstract

Osteoarthritis (OA) is a heterogeneous and multi-factorial disease characterized by the progressive loss of articular cartilage. Magnetic Resonance Imaging has been established as an accurate technique to assess cartilage damage through both cartilage morphology (volume and thickness) and cartilage water mobility (Spin-lattice relaxation, T2). The Osteoarthritis Initiative, OAI, is a large scale serial assessment of subjects at different stages of OA including those with pre-clinical symptoms. The electronic availability of the comprehensive data collected as part of the initiative provides an unprecedented opportunity to discover new relationships in complex diseases such as OA. However, imaging data, which provides the most accurate non-invasive assessment of OA, is not directly amenable for data mining. Changes in morphometry and relaxivity with OA disease are both complex and subtle, making manual methods extremely difficult. This chapter focuses on the image analysis techniques to automatically localize the differences in morphometry and relaxivity changes in different population sub-groups (normal and OA subjects segregated by age, gender, and race). The image analysis infrastructure will enable automatic extraction of cartilage features at the voxel level; the ultimate goal is to integrate this infrastructure to discover relationships between the image findings and other clinical features.

摘要

骨关节炎(OA)是一种异质性多因素疾病,其特征为关节软骨的进行性丧失。磁共振成像已成为一种准确的技术,可通过软骨形态(体积和厚度)以及软骨水流动性(自旋晶格弛豫,T2)来评估软骨损伤。骨关节炎倡议组织(OAI)是对OA不同阶段的受试者(包括有临床前症状者)进行的大规模系列评估。作为该倡议一部分所收集的全面数据的电子可用性为发现诸如OA等复杂疾病中的新关系提供了前所未有的机会。然而,提供OA最准确非侵入性评估的成像数据并不直接适用于数据挖掘。OA疾病中形态测量和弛豫率的变化既复杂又微妙,使得人工方法极为困难。本章重点介绍图像分析技术,以自动定位不同人群亚组(按年龄、性别和种族划分的正常和OA受试者)在形态测量和弛豫率变化方面的差异。图像分析基础设施将能够在体素水平自动提取软骨特征;最终目标是整合该基础设施,以发现图像结果与其他临床特征之间的关系。

相似文献

本文引用的文献

1
Active contours without edges.无边缘活动轮廓。
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
3
7
The costs of arthritis.关节炎的成本。
Arthritis Rheum. 2003 Feb 15;49(1):101-13. doi: 10.1002/art.10913.
8
Uniqueness of medical data mining.医学数据挖掘的独特性。
Artif Intell Med. 2002 Sep-Oct;26(1-2):1-24. doi: 10.1016/s0933-3657(02)00049-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验