Philips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
Cytometry A. 2011 Oct;79(10):825-33. doi: 10.1002/cyto.a.21102. Epub 2011 Jul 22.
The circulating tumor cells (CTCs) appear to be a marker of metastasis development, especially, for highly aggressive and epidemically growing melanoma malignancy that is often metastatic at early stages. Recently, we introduced in vivo photoacoustic (PA) flow cytometry (PAFC) for label-free detection of mouse B16F10 CTCs in melanoma-bearing mice using melanin as an intrinsic marker. Here, we significantly improve the speed of PAFC by using a high-pulse repetition rate laser operating at 820 and 1064 nm wavelengths. This platform was used in preclinical studies for label-free PA detection of low-pigmented human CTCs. Demonstrated label-free PAFC detection, low level of background signals, and favorable safety standards for near-infrared irradiation suggest that a fiber laser operating at 1064 nm at pulse repetition rates up to 0.5 MHz could be a promising source for portable clinical PAFC devices. The possible applications can include early diagnosis of melanoma at the parallel progression of primary tumor and CTCs, detection of cancer recurrence, residual disease and real-time monitoring of therapy efficiency by counting CTCs before, during, and after therapeutic intervention. Herewith, we also address sensitivity of label-free detection of melanoma CTCs and introduce in vivo CTC targeting by magnetic nanoparticles conjugated with specific antibody and magnetic cells enrichment.
循环肿瘤细胞 (CTCs) 似乎是转移发展的标志物,特别是对于高度侵袭性和流行生长的黑色素瘤恶性肿瘤,其在早期往往就已经转移。最近,我们引入了体内光声(PA)流动 cytometry(PAFC),使用黑色素作为内在标志物,对携带黑色素瘤的小鼠中的 B16F10 CTCs 进行无标记检测。在这里,我们通过使用工作在 820nm 和 1064nm 波长的高脉冲重复率激光,显著提高了 PAFC 的速度。该平台用于临床前研究,对低色素的人 CTCs 进行无标记的 PA 检测。证明了无标记的 PAFC 检测、低背景信号水平以及对近红外辐射的良好安全标准表明,工作在 1064nm 波长、脉冲重复率高达 0.5MHz 的光纤激光器可能成为便携式临床 PAFC 设备的有前途的光源。可能的应用包括在原发性肿瘤和 CTCs 平行进展时早期诊断黑色素瘤、检测癌症复发、残留疾病以及通过在治疗干预之前、期间和之后计数 CTCs 来实时监测治疗效果。在此,我们还解决了无标记检测黑色素瘤 CTCs 的灵敏度问题,并引入了通过与特异性抗体偶联的磁性纳米颗粒和磁性细胞富集进行体内 CTC 靶向检测。