Suppr超能文献

利用近红外高脉冲率激光对循环人黑色素瘤细胞进行体内超快速光声流式细胞术检测。

In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers.

机构信息

Philips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.

出版信息

Cytometry A. 2011 Oct;79(10):825-33. doi: 10.1002/cyto.a.21102. Epub 2011 Jul 22.

Abstract

The circulating tumor cells (CTCs) appear to be a marker of metastasis development, especially, for highly aggressive and epidemically growing melanoma malignancy that is often metastatic at early stages. Recently, we introduced in vivo photoacoustic (PA) flow cytometry (PAFC) for label-free detection of mouse B16F10 CTCs in melanoma-bearing mice using melanin as an intrinsic marker. Here, we significantly improve the speed of PAFC by using a high-pulse repetition rate laser operating at 820 and 1064 nm wavelengths. This platform was used in preclinical studies for label-free PA detection of low-pigmented human CTCs. Demonstrated label-free PAFC detection, low level of background signals, and favorable safety standards for near-infrared irradiation suggest that a fiber laser operating at 1064 nm at pulse repetition rates up to 0.5 MHz could be a promising source for portable clinical PAFC devices. The possible applications can include early diagnosis of melanoma at the parallel progression of primary tumor and CTCs, detection of cancer recurrence, residual disease and real-time monitoring of therapy efficiency by counting CTCs before, during, and after therapeutic intervention. Herewith, we also address sensitivity of label-free detection of melanoma CTCs and introduce in vivo CTC targeting by magnetic nanoparticles conjugated with specific antibody and magnetic cells enrichment.

摘要

循环肿瘤细胞 (CTCs) 似乎是转移发展的标志物,特别是对于高度侵袭性和流行生长的黑色素瘤恶性肿瘤,其在早期往往就已经转移。最近,我们引入了体内光声(PA)流动 cytometry(PAFC),使用黑色素作为内在标志物,对携带黑色素瘤的小鼠中的 B16F10 CTCs 进行无标记检测。在这里,我们通过使用工作在 820nm 和 1064nm 波长的高脉冲重复率激光,显著提高了 PAFC 的速度。该平台用于临床前研究,对低色素的人 CTCs 进行无标记的 PA 检测。证明了无标记的 PAFC 检测、低背景信号水平以及对近红外辐射的良好安全标准表明,工作在 1064nm 波长、脉冲重复率高达 0.5MHz 的光纤激光器可能成为便携式临床 PAFC 设备的有前途的光源。可能的应用包括在原发性肿瘤和 CTCs 平行进展时早期诊断黑色素瘤、检测癌症复发、残留疾病以及通过在治疗干预之前、期间和之后计数 CTCs 来实时监测治疗效果。在此,我们还解决了无标记检测黑色素瘤 CTCs 的灵敏度问题,并引入了通过与特异性抗体偶联的磁性纳米颗粒和磁性细胞富集进行体内 CTC 靶向检测。

相似文献

3
A Noninvasive and Real-Time Method for Circulating Tumor Cell Detection by In Vivo Flow Cytometry.
Methods Mol Biol. 2017;1634:247-262. doi: 10.1007/978-1-4939-7144-2_21.
4
In vivo photoacoustic flow cytometry for early malaria diagnosis.
Cytometry A. 2016 Jun;89(6):531-42. doi: 10.1002/cyto.a.22854. Epub 2016 Apr 14.
5
Photoacoustic flow cytometry.
Methods. 2012 Jul;57(3):280-96. doi: 10.1016/j.ymeth.2012.06.009. Epub 2012 Jun 26.
6
In vivo photoacoustic flow cytometry-based study of the effect of melanin content on melanoma metastasis.
J Biophotonics. 2024 Mar;17(3):e202300405. doi: 10.1002/jbio.202300405. Epub 2023 Dec 27.
7
Real-Time Label-Free Embolus Detection Using In Vivo Photoacoustic Flow Cytometry.
PLoS One. 2016 May 26;11(5):e0156269. doi: 10.1371/journal.pone.0156269. eCollection 2016.

引用本文的文献

1
Noninvasive in vivo photoacoustic detection of malaria with Cytophone in Cameroon.
Nat Commun. 2024 Oct 25;15(1):9228. doi: 10.1038/s41467-024-53243-z.
2
Photoacoustic microscopy for real-time monitoring of near-infrared optical absorbers inside biological tissue.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11527. doi: 10.1117/1.JBO.29.S1.S11527. Epub 2024 Mar 9.
3
Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11518. doi: 10.1117/1.JBO.29.S1.S11518. Epub 2024 Jan 12.
4
Efficient label-free photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window.
Photoacoustics. 2023 Jan 27;29:100456. doi: 10.1016/j.pacs.2023.100456. eCollection 2023 Feb.
5
Overview of Ultrasound Detection Technologies for Photoacoustic Imaging.
Micromachines (Basel). 2020 Jul 17;11(7):692. doi: 10.3390/mi11070692.
7
Photoacoustic clinical imaging.
Photoacoustics. 2019 Jun 8;14:77-98. doi: 10.1016/j.pacs.2019.05.001. eCollection 2019 Jun.
8
9
Real-time monitoring of circulating tumor cell (CTC) release after nanodrug or tumor radiotherapy using in vivo flow cytometry.
Biochem Biophys Res Commun. 2017 Oct 21;492(3):507-512. doi: 10.1016/j.bbrc.2017.08.053. Epub 2017 Aug 16.
10
Detection and capture of breast cancer cells with photoacoustic flow cytometry.
J Biomed Opt. 2016 Aug 1;21(8):87007. doi: 10.1117/1.JBO.21.8.087007.

本文引用的文献

1
Isolation of tumorigenic circulating melanoma cells.
Biochem Biophys Res Commun. 2010 Nov 26;402(4):711-7. doi: 10.1016/j.bbrc.2010.10.091. Epub 2010 Oct 25.
2
Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18392-7. doi: 10.1073/pnas.1012539107. Epub 2010 Oct 7.
3
Fiber-optic multiphoton flow cytometry in whole blood and in vivo.
J Biomed Opt. 2010 Jul-Aug;15(4):047004. doi: 10.1117/1.3463481.
4
Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser.
Opt Express. 2010 Apr 12;18(8):8605-20. doi: 10.1364/OE.18.008605.
5
Multiscale photoacoustic microscopy and computed tomography.
Nat Photonics. 2009 Aug 29;3(9):503-509. doi: 10.1038/nphoton.2009.157.
6
Circulating tumour cells in clinical practice: Methods of detection and possible characterization.
Methods. 2010 Apr;50(4):289-97. doi: 10.1016/j.ymeth.2010.01.027. Epub 2010 Jan 29.
8
In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells.
Nat Nanotechnol. 2009 Dec;4(12):855-60. doi: 10.1038/nnano.2009.333. Epub 2009 Nov 15.
10
Laser optoacoustic imaging system for detection of breast cancer.
J Biomed Opt. 2009 Mar-Apr;14(2):024007. doi: 10.1117/1.3086616.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验