Wang Lihong V
Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130-4899.
Nat Photonics. 2009 Aug 29;3(9):503-509. doi: 10.1038/nphoton.2009.157.
Photoacoustic tomography (PAT) is probably the fastest growing biomedical imaging technology owing to its capability of high-resolution sensing of rich optical contrast in vivo at depths beyond the optical transport mean free path (~1 mm in the skin). Existing high-resolution optical imaging technologies, such as confocal microscopy and two-photon microscopy, have fundamentally impacted biomedicine but cannot reach such depths. Taking advantage of low ultrasonic scattering, PAT indirectly improves tissue transparency by 100 to 1000 fold and consequently enables deeply penetrating functional and molecular imaging at high spatial resolution. Further, PAT holds the promise of in vivo imaging at multiple length scales ranging from subcellular organelles to organs with the same contrast origin, an important application in multiscale systems biology research.
光声断层扫描(PAT)可能是发展最快的生物医学成像技术,这归因于其能够在光学输运平均自由程(皮肤中约为1毫米)以外的深度对体内丰富的光学对比度进行高分辨率传感。现有的高分辨率光学成像技术,如共聚焦显微镜和双光子显微镜,对生物医学产生了根本性的影响,但无法达到这样的深度。利用低超声散射特性,PAT间接将组织透明度提高100至1000倍,从而能够以高空间分辨率进行深度穿透功能和分子成像。此外,PAT有望在从亚细胞器到器官的多个长度尺度上进行体内成像,且对比度来源相同,这在多尺度系统生物学研究中具有重要应用。