Liu Xiao-Lei, Lu Jin-Long, Hu Xue-Hai
College of Science, Huazhong Agricultural University, Wuhan, PR of China.
Protein Pept Lett. 2011 Dec;18(12):1244-50. doi: 10.2174/092986611797642661.
Comprehensive knowledge of thermophilic mechanisms about some organisms whose optimum growth temperature (OGT) ranges from 50 to 80 °C degree plays a major role for helping to design stable proteins. How to predict function-unknown proteins to be thermophilic is a long but not fairly resolved problem. Chaos game representation (CGR) can investigate hidden patterns in protein sequences, and also can visually reveal their previously unknown structures. In this paper, using the general form of pseudo amino acid composition to represent protein samples, we proposed a novel method for presenting protein sequence to a CGR picture using CGR algorithm. A 24-dimensional vector extracted from these CGR segments and the first two PCA features are used to classify thermophilic and mesophilic proteins by Support Vector Machine (SVM). Our method is evaluated by the jackknife test. For the 24-dimensional vector, the accuracy is 0.8792 and Matthews Correlation Coefficient (MCC) is 0.7587. The 26-dimensional vector by hybridizing with PCA components performs highly satisfaction, in which the accuracy achieves 0.9944 and MCC achieves 0.9888. The results show the effectiveness of the new hybrid method.
对于一些最适生长温度(OGT)在50至80摄氏度范围内的生物体,全面了解其嗜热机制对于帮助设计稳定的蛋白质起着重要作用。如何预测功能未知的蛋白质是否嗜热是一个长期但尚未完全解决的问题。混沌博弈表示(CGR)可以研究蛋白质序列中的隐藏模式,还可以直观地揭示其以前未知的结构。在本文中,我们使用伪氨基酸组成的一般形式来表示蛋白质样本,提出了一种使用CGR算法将蛋白质序列呈现为CGR图片的新方法。从这些CGR片段中提取的24维向量和前两个主成分分析(PCA)特征用于通过支持向量机(SVM)对嗜热蛋白和嗜温蛋白进行分类。我们的方法通过留一法检验进行评估。对于24维向量,准确率为0.8792,马修斯相关系数(MCC)为0.7587。与PCA成分杂交的26维向量表现出高度令人满意的结果,其中准确率达到0.9944,MCC达到0.9888。结果表明了这种新的混合方法的有效性。