Suppr超能文献

一种用于区分 H1N1/09 流感传播中社会学和生物学易感性因素的数学模型。

A mathematical model to distinguish sociological and biological susceptibility factors in disease transmission in the context of H1N1/09 influenza.

机构信息

Department of Mathematics, The University of British Columbia, Room 121, 1984 Mathematics Road, Vancouver, BC, Canada.

出版信息

J Theor Biol. 2011 Oct 7;286(1):50-6. doi: 10.1016/j.jtbi.2011.07.008. Epub 2011 Jul 23.

Abstract

The pandemic H1N1/09 influenza virus differs from seasonal influenza in its greater prevalence among younger individuals. It is well known that younger individuals interact with one another and society as a whole more than older individuals, suggesting that this could account for the skewed prevalence. However, the observed skewed disease prevalence could also be due to a lesser biological vulnerability (cross-immunity or partial immunity) in the older generation. We develop an age-structured, compartmental mathematical model to quantify the degree to which the skewed disease prevalence among younger individuals is due to a lesser biological vulnerability in the older generation. The model incorporates synthetic data regarding sociological interaction between different age groups generated from the simulation software EpiSims, which allows a clear distinction of the sociological and biological susceptibility effects on the transmission rate of the disease. After fitting the model to available data, we quantify the degree of biological susceptibility of five age groups in the population of the United States. Our model indicates that individuals over the age of 60 are 1/15 as susceptible to H1N1/09 influenza as those under 30 years of age. The key feature in the model is separating social contact factors of disease transmission from biological ones.

摘要

大流行性 H1N1/09 流感病毒在年轻人中的流行率高于季节性流感,这与季节性流感有所不同。众所周知,年轻人比老年人更多地与彼此和整个社会互动,这表明这可能是造成流行率偏斜的原因。然而,观察到的疾病流行率偏斜也可能是由于老年人的生物脆弱性(交叉免疫或部分免疫)较低所致。我们开发了一个年龄结构的、分离的数学模型,以量化年轻人中疾病流行率偏斜程度是由于老年人的生物脆弱性较低所致的程度。该模型结合了来自仿真软件 EpiSims 的关于不同年龄组之间社会互动的综合数据,该软件可以清楚地区分疾病传播率的社会和生物学易感性效应。在将模型拟合到可用数据之后,我们量化了美国人口中五个年龄组的生物学易感性程度。我们的模型表明,60 岁以上的个体感染 H1N1/09 流感的易感性是 30 岁以下个体的 1/15。该模型的关键特征是将疾病传播的社会接触因素与生物因素分开。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验