Suppr超能文献

应用列线图预测晚期膀胱癌患者的预后。

Use of nomograms for predictions of outcome in patients with advanced bladder cancer.

机构信息

Division of Urology; Sidney Kimmel Center for Prostate and Urologic Cancer, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 27, New York, NY 10065, USA.

出版信息

Ther Adv Urol. 2009 Apr;1(1):13-26. doi: 10.1177/1756287209103923.

Abstract

INTRODUCTION

Accurate estimates of risk are essential for physicians if they are to recommend a specific management to patients with bladder cancer. In this review, we discuss the criteria for the evaluation of nomograms and review current available nomograms for advanced bladder cancer.

METHODS

A retrospective review of the Pubmed database between 2002 and 2008 was performed using the keywords 'nomogram' and 'bladder'. We limited the articles to advanced bladder cancer. We recorded input variables, prediction form, number of patients used to develop the prediction tools, the outcome being predicted, prediction tool-specific features, predictive accuracy, and whether validation was performed.

RESULTS

We discuss the characteristics needed to evaluate nomograms such as predictive accuracy, calibration, generalizability, level of complexity, effect of competing risks, conditional probabilities, and head-to-head comparison with other prediction methods. The predictive accuracies of the pre-cystectomy tools (n = 2) range from ∼65-75% and that of the post-cystectomy tools (n = 5) range from ∼75-80%. While some of these nomograms are well-calibrated and outperform AJCC staging, none has been externally validated. To date, four studies demonstrated a statistically significant improvement in predictive accuracy of nomograms by including biomarkers.

CONCLUSIONS

Nomograms provide accurate individualized estimates of outcomes. They currently represent the most accurate and discriminatory decision-making aids tools for predicting outcomes in patients with bladder cancer. Use of current nomograms could improve current selection of patients for standard therapy and investigational trial design by ensuring homogeneous groups. The addition of biological markers to the currently available nomograms using clinical and pathologic data holds the promise of improving prediction and refining management of patients with bladder cancer.

摘要

简介

如果医生要向膀胱癌患者推荐特定的治疗方案,那么准确评估风险至关重要。在本综述中,我们讨论了评价列线图的标准,并回顾了目前可用于晚期膀胱癌的列线图。

方法

我们使用关键词“列线图”和“膀胱”对 2002 年至 2008 年期间的 Pubmed 数据库进行了回顾性分析。我们将文章限定为晚期膀胱癌。我们记录了输入变量、预测形式、用于开发预测工具的患者数量、预测的结果、预测工具的具体特征、预测准确性以及是否进行了验证。

结果

我们讨论了评估列线图所需的特征,包括预测准确性、校准、通用性、复杂程度、竞争风险的影响、条件概率以及与其他预测方法的头对头比较。术前工具(n=2)的预测准确性范围约为 65%-75%,术后工具(n=5)的预测准确性范围约为 75%-80%。虽然其中一些列线图校准良好且优于 AJCC 分期,但均未进行外部验证。迄今为止,四项研究通过纳入生物标志物证明了列线图预测准确性的统计学显著提高。

结论

列线图提供了准确的个体化预后估计。它们目前是预测膀胱癌患者预后最准确和最具区分度的决策辅助工具。使用当前的列线图可以通过确保同质组来改善对标准治疗的患者选择和临床试验设计。将临床和病理数据中目前可用的列线图与生物标志物相结合,有望改善预测并细化膀胱癌患者的管理。

相似文献

2
Nomograms for bladder cancer.膀胱癌列线图
Eur Urol. 2008 Jul;54(1):41-53. doi: 10.1016/j.eururo.2008.01.004. Epub 2008 Jan 15.

引用本文的文献

本文引用的文献

1
Can nomograms be superior to other prediction tools?列线图能否优于其他预测工具?
BJU Int. 2009 Feb;103(4):492-5; discussion 495-7. doi: 10.1111/j.1464-410X.2008.08073.x. Epub 2008 Sep 18.
7
Inventory of prostate cancer predictive tools.前列腺癌预测工具清单。
Curr Opin Urol. 2008 May;18(3):279-96. doi: 10.1097/MOU.0b013e3282f9b3e5.
10
Predicting survival after radical cystectomy for bladder cancer.预测膀胱癌根治性膀胱切除术后的生存率。
BJU Int. 2008 Jul;102(1):15-22. doi: 10.1111/j.1464-410X.2008.07594.x. Epub 2008 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验