Shariat Shahrokh F, Capitanio Umberto, Jeldres Claudio, Karakiewicz Pierre I
Department of Urology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
BJU Int. 2009 Feb;103(4):492-5; discussion 495-7. doi: 10.1111/j.1464-410X.2008.08073.x. Epub 2008 Sep 18.
Accurate estimates of the likelihood of treatment success, complications and long-term morbidity are essential for counselling and informed decision-making in patients with urological malignancies. Accurate risk estimates are also required for clinical trial design, to ensure homogeneous patient distribution. Nomograms, risk groupings, artificial neural networks (ANNs), probability tables, and classification and regression tree (CART) analyses represent the available decision aids that can be used within these tasks. We critically reviewed available decision aids (nomograms, risk groupings, ANNs, probability tables and CART analyses) and compared their ability to predict the outcome of interest. Of the available decision aids, nomograms provide individualized evidence-based and highly accurate risk estimates that facilitate management-related decisions. We suggest the use of nomograms for the purpose of evidence-based, individualized decision-making.
准确估计治疗成功的可能性、并发症和长期发病率,对于泌尿外科恶性肿瘤患者的咨询和知情决策至关重要。临床试验设计也需要准确的风险估计,以确保患者分布均匀。列线图、风险分组、人工神经网络(ANN)、概率表以及分类与回归树(CART)分析是可用于这些任务的现有决策辅助工具。我们对现有的决策辅助工具(列线图、风险分组、人工神经网络、概率表和CART分析)进行了严格审查,并比较了它们预测感兴趣结果的能力。在现有的决策辅助工具中,列线图提供基于证据的个性化且高度准确的风险估计,有助于做出与管理相关的决策。我们建议使用列线图进行基于证据的个性化决策。