Suppr超能文献

在线非线性序贯贝叶斯生物污水处理过程估计。

Online nonlinear sequential Bayesian estimation of a biological wastewater treatment process.

机构信息

Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea.

出版信息

Bioprocess Biosyst Eng. 2012 Mar;35(3):359-69. doi: 10.1007/s00449-011-0574-3. Epub 2011 Jul 27.

Abstract

Online estimation of unknown state variables is a key component in the accurate modelling of biological wastewater treatment processes due to a lack of reliable online measurement systems. The extended Kalman filter (EKF) algorithm has been widely applied for wastewater treatment processes. However, the series approximations in the EKF algorithm are not valid, because biological wastewater treatment processes are highly nonlinear with a time-varying characteristic. This work proposes an alternative online estimation approach using the sequential Monte Carlo (SMC) methods for recursive online state estimation of a biological sequencing batch reactor for wastewater treatment. SMC is an algorithm that makes it possible to recursively construct the posterior probability density of the state variables, with respect to all available measurements, through a random exploration of the states by entities called 'particle'. In this work, the simplified and modified Activated Sludge Model No. 3 with nonlinear biological kinetic models is used as a process model and formulated in a dynamic state-space model applied to the SMC method. The performance of the SMC method for online state estimation applied to a biological sequencing batch reactor with online and offline measured data is encouraging. The results indicate that the SMC method could emerge as a powerful tool for solving online state and parameter estimation problems without any model linearization or restrictive assumptions pertaining to the type of nonlinear models for biological wastewater treatment processes.

摘要

由于缺乏可靠的在线测量系统,因此未知状态变量的在线估计是准确模拟生物废水处理过程的关键组成部分。扩展卡尔曼滤波(EKF)算法已广泛应用于废水处理过程。然而,EKF 算法中的级数逼近是无效的,因为生物废水处理过程具有高度非线性和时变特性。这项工作提出了一种替代的在线估计方法,使用顺序蒙特卡罗(SMC)方法对用于废水处理的生物序批式反应器进行递归在线状态估计。SMC 是一种算法,通过称为“粒子”的实体对状态进行随机探索,使得有可能递归地构建相对于所有可用测量值的状态变量的后验概率密度。在这项工作中,简化和修改的带有非线性生物动力学模型的活性污泥模型 No.3 被用作过程模型,并以动态状态空间模型的形式应用于 SMC 方法。SMC 方法在带有在线和离线测量数据的生物序批式反应器中的在线状态估计中的性能令人鼓舞。结果表明,SMC 方法可以作为一种强大的工具,用于解决在线状态和参数估计问题,而无需对生物废水处理过程的非线性模型类型进行任何模型线性化或限制假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验