Kostal Lubomir, Marsalek Petr
Institute of Physiology AS CR, v.v.i., Videnska 1083, CZ-142 20, Praha 4, Czech Republic.
Chin J Physiol. 2010 Dec 31;53(6):454-64. doi: 10.4077/cjp.2010.amm031.
We propose a novel measure of statistical dispersion of a positive continuous random variable: the entropy-based dispersion (ED). We discuss the properties of ED and contrast them with the widely employed standard deviation (SD) measure. We show that the properties of SD and ED are different: while SD is a second moment characteristics measuring the dispersion relative to the mean value, ED measures an effective spread of the probability distribution and is more closely related to the notion of randomness of spiking activity. We apply both SD and ED to analyze the temporal precision of neuronal spiking activity of the perfect integrate-and-fire model, which is a plausible neural model under the assumption of high input synaptic activity. We show that SD and ED may give strikingly different results for some widely used models of presynaptic activity.
基于熵的离散度(ED)。我们讨论了ED的性质,并将它们与广泛使用的标准差(SD)度量进行对比。我们表明,SD和ED的性质不同:虽然SD是一种二阶矩特征,用于测量相对于均值的离散度,但ED测量的是概率分布的有效展布,并且与尖峰活动的随机性概念更密切相关。我们应用SD和ED来分析完美积分发放模型的神经元尖峰活动的时间精度,该模型是在高输入突触活动假设下的一个合理的神经模型。我们表明,对于一些广泛使用的突触前活动模型,SD和ED可能会给出截然不同的结果。