Toth Peter G, Marsalek Petr, Pokora Ondrej
Institute of Pathological Physiology, First Medical Faculty, Charles University, U Nemocnice 5, 12853, Prague 2, Czech Republic.
Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187, Dresden, Germany.
Biol Cybern. 2018 Apr;112(1-2):41-55. doi: 10.1007/s00422-017-0739-5. Epub 2017 Oct 29.
This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal the average in less time and larger population. The objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps find correspondence between variables and parameters. The methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: a formula to calculate vector strength of neural spike timing dependent on the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons where spike trains have and do not have the ergodic property are then discussed.
本文讨论了神经元放电序列中的遍历性属性和循环统计特征。遍历性意味着在长时间内对较小群体进行的平均应等于在较短时间内对较大群体进行的平均。目的是展示神经元模型设计和验证的简单示例,其中遍历性假设有助于找到变量和参数之间的对应关系。所使用的方法是解析和数值计算、现象学脉冲神经元和神经回路的数值模型。使用这些方法获得的结果如下。它们是:一个根据放电序列参数计算神经放电时间向量强度的公式、放电序列变异性参数的描述以及基于声音定位神经回路实现的计算假设的输出放电密度模型。理论结果通过引用实验数据来说明。然后讨论了放电序列具有和不具有遍历性属性的神经元示例。