Suppr超能文献

Ascl1 基因揭示了小脑局部回路组装的深入见解。

Ascl1 genetics reveals insights into cerebellum local circuit assembly.

机构信息

Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA.

出版信息

J Neurosci. 2011 Jul 27;31(30):11055-69. doi: 10.1523/JNEUROSCI.0479-11.2011.

Abstract

Two recently generated targeted mouse alleles of the neurogenic gene Ascl1 were used to characterize cerebellum circuit formation. First, genetic inducible fate mapping (GIFM) with an Ascl1(CreER) allele was found to specifically mark all glial and neuron cell types that arise from the ventricular zone (vz). Moreover, each cell type has a unique temporal profile of marking with Ascl1(CreER) GIFM. Of great utility, Purkinje cells (Pcs), an early cohort of Bergmann glia, and four classes of GABAergic interneurons can be genetically birth dated during embryogenesis using Ascl1(CreER) GIFM. Astrocytes and oligodendrocytes, in contrast, express Ascl1(CreER) throughout their proliferative phase in the white matter. Interestingly, the final position each neuron type acquires differs depending on when it expresses Ascl1. Interneurons (including candelabrum) attain a more outside position the later they express Ascl1, whereas Pcs have distinct settling patterns each day they express Ascl1. Second, using a conditional Ascl1 allele, we discovered that Ascl1 is differentially required for generation of most vz-derived cells. Mice lacking Ascl1 in the cerebellum have a major decrease in three types of interneurons with a tendency toward a loss of later-born interneurons, as well as an imbalance of oligodendrocytes and astrocytes. Double-mutant analysis indicates that a related helix-loop-helix protein, Ptf1a, functions with Ascl1 in generating interneurons and Pcs. By fate mapping vz-derived cells in Ascl1 mutants, we further discovered that Ascl1 plays a specific role during the time period when Pcs are generated in restricting vz progenitors from becoming rhombic lip progenitors.

摘要

两种新生成的靶向神经基因 Ascl1 的小鼠突变基因被用来描述小脑回路的形成。首先,利用 Ascl1(CreER) 突变基因的遗传诱导命运图谱(GIFM)发现,它可以特异性标记所有来自脑室区(vz)的神经胶质和神经元细胞类型。此外,每种细胞类型都有独特的 Ascl1(CreER) GIFM 标记时间模式。非常有用的是,使用 Ascl1(CreER) GIFM 可以在胚胎发生期间对浦肯野细胞(Pcs)、早期的伯格曼胶质细胞和四类 GABA 能中间神经元进行遗传出生日期标记。相比之下,星形胶质细胞和少突胶质细胞在其在白质中的增殖阶段都表达 Ascl1(CreER)。有趣的是,每种神经元类型获得的最终位置取决于其表达 Ascl1 的时间。中间神经元(包括烛台)表达 Ascl1 的时间越晚,其获得的位置就越外侧,而 Pcs 每天表达 Ascl1 时都有独特的定居模式。其次,使用条件性 Ascl1 突变基因,我们发现 Ascl1 对大多数 vz 衍生细胞的产生具有不同的要求。小脑缺乏 Ascl1 的小鼠中,三种中间神经元的数量明显减少,晚期出生的中间神经元有减少的趋势,少突胶质细胞和星形胶质细胞的数量也不平衡。双突变分析表明,一种相关的螺旋-环-螺旋蛋白 Ptf1a 与 Ascl1 一起在产生中间神经元和 Pcs 中发挥作用。通过对 Ascl1 突变体中的 vz 衍生细胞进行命运图谱分析,我们进一步发现,Ascl1 在 Pcs 产生的时间内发挥特定作用,限制 vz 祖细胞成为菱形唇祖细胞。

相似文献

1
Ascl1 genetics reveals insights into cerebellum local circuit assembly.
J Neurosci. 2011 Jul 27;31(30):11055-69. doi: 10.1523/JNEUROSCI.0479-11.2011.
5
Conditional deletion of Neurog1 in the cerebellum of postnatal mice delays inhibitory interneuron maturation.
J Neurosci Res. 2018 Sep;96(9):1560-1575. doi: 10.1002/jnr.24247. Epub 2018 Apr 17.
6
Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum.
Dev Biol. 2009 Apr 15;328(2):422-33. doi: 10.1016/j.ydbio.2009.02.008. Epub 2009 Feb 13.
7
Heterogeneity and Bipotency of Astroglial-Like Cerebellar Progenitors along the Interneuron and Glial Lineages.
J Neurosci. 2015 May 13;35(19):7388-402. doi: 10.1523/JNEUROSCI.5255-14.2015.
10
Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections.
Neuroscience. 2009 Sep 1;162(3):574-88. doi: 10.1016/j.neuroscience.2008.12.025. Epub 2008 Dec 24.

引用本文的文献

1
Aberrant histone modifications in pediatric brain tumors.
Front Oncol. 2025 Jun 10;15:1587157. doi: 10.3389/fonc.2025.1587157. eCollection 2025.
2
Cell fate acquisition and reprogramming by the proneural transcription factor ASCL1.
Open Biol. 2025 Jun;15(6):250018. doi: 10.1098/rsob.250018. Epub 2025 Jun 18.
4
Mapping the developmental profile of ventricular zone-derived neurons in the human cerebellum.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2415425122. doi: 10.1073/pnas.2415425122. Epub 2025 Apr 18.
5
Increased understanding of complex neuronal circuits in the cerebellar cortex.
Front Cell Neurosci. 2024 Oct 21;18:1487362. doi: 10.3389/fncel.2024.1487362. eCollection 2024.
6
Cerebellar damage with inflammation upregulates oxytocin receptor expression in Bergmann Glia.
Mol Brain. 2024 Jun 28;17(1):41. doi: 10.1186/s13041-024-01114-5.
7
Converging and Diverging Cerebellar Pathways for Motor and Social Behaviors in Mice.
Cerebellum. 2024 Oct;23(5):1754-1767. doi: 10.1007/s12311-024-01706-w. Epub 2024 May 23.
9
Cellular development and evolution of the mammalian cerebellum.
Nature. 2024 Jan;625(7996):788-796. doi: 10.1038/s41586-023-06884-x. Epub 2023 Nov 29.
10
Revisiting the development of cerebellar inhibitory interneurons in the light of single-cell genetic analyses.
Histochem Cell Biol. 2024 Jan;161(1):5-27. doi: 10.1007/s00418-023-02251-z. Epub 2023 Nov 8.

本文引用的文献

3
Genetic fate mapping using site-specific recombinases.
Methods Enzymol. 2010;477:153-81. doi: 10.1016/S0076-6879(10)77010-5.
4
Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map.
J Neurosci. 2010 Jul 28;30(30):10015-24. doi: 10.1523/JNEUROSCI.0653-10.2010.
5
Laminar fate and phenotype specification of cerebellar GABAergic interneurons.
J Neurosci. 2009 May 27;29(21):7079-91. doi: 10.1523/JNEUROSCI.0957-09.2009.
6
Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum.
Dev Biol. 2009 Apr 15;328(2):422-33. doi: 10.1016/j.ydbio.2009.02.008. Epub 2009 Feb 13.
8
Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.
Mol Cell Neurosci. 2008 Aug;38(4):595-606. doi: 10.1016/j.mcn.2008.05.008. Epub 2008 May 20.
9
Comparative analysis of proneural gene expression in the embryonic cerebellum.
Dev Dyn. 2008 Jun;237(6):1726-35. doi: 10.1002/dvdy.21571.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验