Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
J Am Chem Soc. 2011 Aug 31;133(34):13272-5. doi: 10.1021/ja2050315. Epub 2011 Aug 5.
A Rh-doped SrTiO(3) (SrTiO(3):Rh) photocatalyst electrode that was readily prepared by pasting SrTiO(3):Rh powder onto a transparent indium tin oxide electrode gave a cathodic photocurrent under visible-light irradiation (λ > 420 nm), indicating that the SrTiO(3):Rh photocatalyst electrode possessed p-type semiconductor character. The cathodic photocurrent increased with an increase in the amount of doped Rh up to 7 atom %. The incident-photon-to-current efficiency at 420 nm was 0.18% under an applied potential of -0.7 V vs Ag/AgCl for the SrTiO(3):Rh(7 atom %) photocatalyst electrode. The photocurrent was confirmed to be due to water splitting by analyzing the evolved H(2) and O(2). The water splitting proceeded with the application of an external bias smaller than 1.23 V versus a Pt counter electrode under visible-light irradiation and also using a solar simulator, suggesting that solar energy conversion should be possible with the present photoelectrochemical water splitting.
一种 Rh 掺杂 SrTiO(3)(SrTiO(3):Rh)光催化剂电极,通过将 SrTiO(3):Rh 粉末粘贴到透明氧化铟锡电极上很容易制备,在可见光照射下(λ > 420nm)产生阴极光电流,表明 SrTiO(3):Rh 光催化剂电极具有 p 型半导体特性。随着掺杂 Rh 原子量的增加,阴极光电流增加,最高可达 7 原子%。对于 SrTiO(3):Rh(7 原子%)光催化剂电极,在施加的 -0.7 V 相对于 Ag/AgCl 的电位下,在 420nm 处的光生电流量子效率为 0.18%。通过分析产生的 H(2)和 O(2),确认光电流是由于水分解产生的。在可见光照射下,使用外部偏压小于 1.23V 相对于 Pt 对电极进行水分解,并且还使用太阳能模拟器进行水分解,表明可以通过当前的光电化学水分解进行太阳能转换。