Kudo Akihiko, Yoshino Shunya, Tsuchiya Taichi, Udagawa Yuhei, Takahashi Yukihiro, Yamaguchi Masaharu, Ogasawara Ikue, Matsumoto Hiroe, Iwase Akihide
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Faraday Discuss. 2019 Jul 4;215(0):313-328. doi: 10.1039/c8fd00209f.
Various types of Z-scheme systems for water splitting under visible light irradiation were successfully developed by employing Rh- and Ir-doped metal oxide powdered materials with relatively narrow energy gaps (EG): BaTa2O6:Ir,La (EG: 1.9-2.0 eV), NaTaO3:Ir,La (EG: 2.1-2.3 eV), SrTiO3:Ir (EG: 1.6-1.8 eV), NaNbO3:Rh,Ba (EG: 2.5 eV) and TiO2:Rh,Sb (EG: 2.1 eV), with conventional SrTiO3:Rh (an H2-evolving photocatalyst) or BiVO4 (an O2-evolving photocatalyst), and suitable electron mediators. The Z-scheme systems were classified into three groups depending on the combination of H2- and O2-evolving photocatalysts and electron mediator. The Z-scheme systems combining BaTa2O6:Ir,La with BiVO4, and NaTaO3:Ir,La with BiVO4 were active when a [Co(bpy)3]3+/2+ redox couple was used rather than an Fe3+/2+ one. The combination of SrTiO3:Ir with SrTiO3:Rh gave an activity when the [Co(bpy)3]3+/2+ and Fe3+/2+ redox couple ionic mediators were used. The Z-scheme systems combining NaNbO3:Rh,Ba and TiO2:Rh,Sb with SrTiO3:Rh showed activities by using the [Co(bpy)3]3+/2+ and Fe3+/2+ redox couples and also via interparticle electron transfer by just contact with/without reduced graphene oxide (RGO). These suitable combinations can be explained based on the impurity levels of doped Rh3+ and Ir3+ toward the redox potentials of the ionic mediators for the Z-scheme systems employing ionic mediators, and p-/n-type and onset potentials of the photocurrent in the photoelectrochemical properties of those photocatalyst materials for the Z-scheme systems working via interparticle electron transfer.
通过使用具有相对窄能隙(EG)的Rh和Ir掺杂金属氧化物粉末材料成功开发了各种用于可见光照射下光解水的Z型体系:BaTa₂O₆:Ir,La(EG:1.9 - 2.0 eV)、NaTaO₃:Ir,La(EG:2.1 - 2.3 eV)、SrTiO₃:Ir(EG:1.6 - 1.8 eV)、NaNbO₃:Rh,Ba(EG:2.5 eV)和TiO₂:Rh,Sb(EG:2.1 eV),以及传统的SrTiO₃:Rh(一种析氢光催化剂)或BiVO₄(一种析氧光催化剂)和合适的电子介质。根据析氢和析氧光催化剂与电子介质的组合,Z型体系分为三组。当使用[Co(bpy)₃]³⁺/²⁺氧化还原对而非Fe³⁺/²⁺氧化还原对时,将BaTa₂O₆:Ir,La与BiVO₄以及将NaTaO₃:Ir,La与BiVO₄组合的Z型体系具有活性。当使用[Co(bpy)₃]³⁺/²⁺和Fe³⁺/²⁺氧化还原对离子介质时,SrTiO₃:Ir与SrTiO₃:Rh的组合具有活性。将NaNbO₃:Rh,Ba和TiO₂:Rh,Sb与SrTiO₃:Rh组合的Z型体系通过使用[Co(bpy)₃]³⁺/²⁺和Fe³⁺/²⁺氧化还原对以及通过仅与还原氧化石墨烯(RGO)接触/不接触进行颗粒间电子转移而显示出活性。对于采用离子介质的Z型体系,这些合适的组合可以基于掺杂的Rh³⁺和Ir³⁺对离子介质氧化还原电位的杂质能级来解释,而对于通过颗粒间电子转移起作用的Z型体系,这些组合可以基于那些光催化剂材料的光电化学性质中的光电流的p型/n型和起始电位来解释。