Laboratory of Molecular and Cellular Signaling, Department Molecular Cell Biology, K,U, Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
Skelet Muscle. 2011 Apr 4;1(1):16. doi: 10.1186/2044-5040-1-16.
Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging.Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx through Orai1 and/or TRPC channels, leading to Ca2+-dependent apoptosis and muscle degeneration. In addition, human myopathies have been associated with dysfunctional SOCE. Immunodeficient patients harboring loss-of-function Orai1 mutations develop myopathies, while patients suffering from Duchenne muscular dystrophy display alterations in their Ca2+-handling proteins, including STIM proteins. In any case, the molecular determinants responsible for SOCE in human skeletal muscle and for dysregulated SOCE in patients of muscular dystrophy require further examination.
基质相互作用分子 (STIM) 被鉴定为内质网 (ER) Ca2+ 传感器,控制非兴奋细胞中的储存操作 Ca2+ 内流 (SOCE) 和 Ca2+-释放激活的 Ca2+ (CRAC) 通道。STIM 蛋白靶向 Orai1-3,四聚体 Ca2+ 可渗透的质膜通道。结构-功能分析揭示了 Orai 被 STIM 激活的分子决定因素和关键步骤。最近,发现 STIM1 在骨骼肌中高表达,控制肌肉功能和特性。除了 Orai 通道之外,新的 STIM 靶标正在出现。在这里,我们将重点关注 STIM1 在骨骼肌结构、发育和功能中的作用。支持足够的肌浆网 (SR) Ca2+ 储存填充。同样,在我们手中,STIM1 在 C2C12 细胞体外成肌的初始阶段短暂上调。这些细胞中 STIM1 的分子靶标可能涉及 Orai 通道和经典瞬时受体电位 (TRPC) 通道 TRPC1 和 TRPC3。骨骼肌中 SOCE 激活的快速动力学似乎依赖于三联结形成,有利于 STIM1 蛋白复合物与质膜 Ca2+ 流入通道的预定位和/或预形成。此外,Orai1 介导的 Ca2+ 内流似乎对于控制静息 Ca2+ 浓度和适当的 SR Ca2+ 填充是必不可少的。因此,通过 STIM1 依赖性激活从 T 小管系统的 SOCE 引起的 Ca2+ 内流可能会在肌肉刺激期间循环细胞外 Ca2+ 的损失,从而维持适当的 SR Ca2+ 储存和肌肉功能。重要的是,杜氏肌营养不良等破坏性病理的小鼠模型表明,Orai1 和/或 TRPC 通道的 Ca2+ 内流增强,导致 Ca2+ 依赖性细胞凋亡和肌肉退化。此外,人类肌病与功能失调的 SOCE 有关。携带 Orai1 功能丧失突变的免疫缺陷患者会发展为肌病,而患有杜氏肌营养不良症的患者则显示其 Ca2+ 处理蛋白,包括 STIM 蛋白发生改变。在任何情况下,负责人类骨骼肌 SOCE 以及肌肉营养不良症患者失调 SOCE 的分子决定因素都需要进一步研究。