Herman Dorota, Thomas Christopher M, Stekel Dov J
Center for Systems Biology, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
BMC Syst Biol. 2011 Jul 29;5:119. doi: 10.1186/1752-0509-5-119.
IncP-1 plasmids are broad host range plasmids that have been found in clinical and environmental bacteria. They often carry genes for antibiotic resistance or catabolic pathways. The archetypal IncP-1 plasmid RK2 is a well-characterized biological system, with a fully sequenced and annotated genome and wide range of experimental measurements. Its central control operon, encoding two global regulators KorA and KorB, is a natural example of a negatively self-regulated operon. To increase our understanding of the regulation of this operon, we have constructed a dynamical mathematical model using Ordinary Differential Equations, and employed a Bayesian inference scheme, Markov Chain Monte Carlo (MCMC) using the Metropolis-Hastings algorithm, as a way of integrating experimental measurements and a priori knowledge. We also compared MCMC and Metabolic Control Analysis (MCA) as approaches for determining the sensitivity of model parameters.
We identified two distinct sets of parameter values, with different biological interpretations, that fit and explain the experimental data. This allowed us to highlight the proportion of repressor protein as dimers as a key experimental measurement defining the dynamics of the system. Analysis of joint posterior distributions led to the identification of correlations between parameters for protein synthesis and partial repression by KorA or KorB dimers, indicating the necessary use of joint posteriors for correct parameter estimation. Using MCA, we demonstrated that the system is highly sensitive to the growth rate but insensitive to repressor monomerization rates in their selected value regions; the latter outcome was also confirmed by MCMC. Finally, by examining a series of different model refinements for partial repression by KorA or KorB dimers alone, we showed that a model including partial repression by KorA and KorB was most compatible with existing experimental data.
We have demonstrated that the combination of dynamical mathematical models with Bayesian inference is valuable in integrating diverse experimental data and identifying key determinants and parameters for the IncP-1 central control operon. Moreover, we have shown that Bayesian inference and MCA are complementary methods for identification of sensitive parameters. We propose that this demonstrates generic value in applying this combination of approaches to systems biology dynamical modelling.
IncP-1质粒是广泛宿主范围的质粒,已在临床和环境细菌中发现。它们通常携带抗生素抗性基因或分解代谢途径基因。典型的IncP-1质粒RK2是一个特征明确的生物系统,具有完全测序和注释的基因组以及广泛的实验测量数据。其中心控制操纵子编码两个全局调节因子KorA和KorB,是负向自我调节操纵子的一个自然实例。为了增进我们对该操纵子调控的理解,我们使用常微分方程构建了一个动态数学模型,并采用贝叶斯推理方案,即使用Metropolis-Hastings算法的马尔可夫链蒙特卡罗(MCMC)方法,作为整合实验测量数据和先验知识的一种方式。我们还比较了MCMC和代谢控制分析(MCA)作为确定模型参数敏感性的方法。
我们确定了两组具有不同生物学解释的不同参数值,它们拟合并解释了实验数据。这使我们能够突出阻遏蛋白二聚体的比例作为定义系统动态的关键实验测量值。对联合后验分布的分析导致确定了蛋白质合成参数与KorA或KorB二聚体的部分阻遏之间的相关性,表明为了正确估计参数必须使用联合后验。使用MCA,我们证明该系统对生长速率高度敏感,但在其选定的值区域对阻遏蛋白单体化速率不敏感;MCMC也证实了后一结果。最后,通过单独检查一系列针对KorA或KorB二聚体部分阻遏的不同模型改进,我们表明包含KorA和KorB部分阻遏的模型与现有实验数据最兼容。
我们已经证明,动态数学模型与贝叶斯推理的结合在整合各种实验数据以及确定IncP-1中心控制操纵子的关键决定因素和参数方面具有价值。此外,我们已经表明贝叶斯推理和MCA是用于识别敏感参数的互补方法。我们提出,这证明了将这种方法组合应用于系统生物学动态建模具有普遍价值。