Department of Human Anatomy, Pharmacology and Forensic Medicine, Laboratory of Regenerative Morphology and Bioartificial Structures, University of Parma, Italy.
Ann Anat. 2011 Oct 20;193(5):381-94. doi: 10.1016/j.aanat.2011.06.004. Epub 2011 Jul 8.
Ex situ bioengineering is one of the most promising perspectives in the field of regenerative medicine allowing for organ reconstruction outside the living body; i.e. on the laboratory bench. A number of hollow viscera of the cardiovascular, respiratory, genitourinary, and digestive systems have been successfully bioengineered ex situ, exploiting biocompatible scaffolds with a 3D morphology that recapitulates that of the native organ (organomorphic scaffold). In contrast, bioengineering of entire soft tissue organs and, in particular endocrine glands still remains a substantial challenge. Primary reasons are that no organomorphic scaffolding for endocrine viscera have as yet been entirely assembled using biocompatible materials, nor is there a bioreactor performance capable of supporting growth within the thickness range of the regenerating cell mass which has proven to be reliable enough to ensure formation of a complete macroscopic gland ex situ. Current technical options for reconstruction of endocrine viscera include either biocompatible 3D reticular scaffolds lacking any organomorphic geometry, or allogenic/xenogenic acellular 3D matrices derived from a gland similar to that to be bioengineered, eventually recellularized by autologous/heterologous cells. In 2007, our group designed, using biocompatible material, an organomorphic scaffold-bioreactor unit for bioengineering ex situ the human thyroid gland, chosen as a model for its simple anatomical organization (repetitive follicular cavities). This unit reproduces both the 3D native geometry of the human thyroid stromal/vascular scaffold, and the natural thyrocyte/vascular interface. It is now under intense investigation as an experimental tool to test cellular 3D auto-assembly of thyroid tissue and its related vascular system up to the ex situ generation of a 3D macroscopic thyroid gland. We believe that these studies will lay the groundwork for a new concept in regenerative medicine of soft tissue and endocrine organs; i.e. that the organomorphism of a biocompatible scaffold-bioreactor complex is essential to both the 3D organization of seeded stem cells/precursor cells and their phenotypic fate as glandular/parenchymal/vascular elements, eventually leading to a physiologically competent and immuno-tolerant bioconstruct, macroscopically suitable for transplantation and clinical applications.
器官的体外生物工程是再生医学领域最有前途的研究方向之一,它可以在体外(即在实验室培养板上)重建器官。已经成功地对心血管、呼吸、泌尿生殖和消化系统的许多中空内脏器官进行了体外生物工程改造,利用具有与天然器官相似的 3D 形态的生物相容性支架(器官样支架)。相比之下,整个软组织器官的生物工程,特别是内分泌腺的生物工程仍然是一个重大挑战。主要原因是,还没有使用生物相容性材料完全组装出用于内分泌内脏器官的器官样支架,也没有能够支持在再生细胞质量的厚度范围内生长的生物反应器性能,而这种性能已经被证明足够可靠,可以确保在体外形成完整的宏观腺体。目前用于内分泌腺重建的技术选择包括缺乏任何器官样几何形状的生物相容性 3D 网状支架,或源自要生物工程化的腺体的同种异体/异种去细胞 3D 基质,最终通过自体/异体细胞再细胞化。2007 年,我们的研究小组使用生物相容性材料设计了一种用于体外工程化人类甲状腺的器官样支架-生物反应器单元,选择人类甲状腺作为模型,因为它具有简单的解剖结构(重复的滤泡腔)。该单元再现了人类甲状腺基质/血管支架的 3D 天然几何形状和天然甲状腺细胞/血管界面。它现在正作为一种实验工具进行深入研究,以测试甲状腺组织及其相关血管系统的细胞 3D 自动组装,直至体外生成 3D 宏观甲状腺。我们相信,这些研究将为软组织和内分泌器官的再生医学新概念奠定基础,即生物相容性支架-生物反应器复合物的器官样形态对于种子干细胞/前体细胞的 3D 组织和它们作为腺/实质/血管成分的表型命运至关重要,最终导致具有生理功能和免疫耐受的生物构建体,在宏观上适合移植和临床应用。