Sakarya University Science Institute, Sakarya, Turkey.
Mol Cell Biochem. 2012 Jan;359(1-2):67-72. doi: 10.1007/s11010-011-1000-5. Epub 2011 Jul 30.
Deciphering the understanding of T cell epitopes is critical for vaccine development. As recognition of specific peptides bound to Major histocompatibility complex (MHC) class I molecules, cytotoxic T cells are activated. This is the major step to initiate of immune system response. Knowledge of the MHC specificity will enlighten the way of diagnosis, treatment of pathogens as well as peptide vaccine development. So far, a number of methods have been developed to predict MHC/peptide binding. In this article, a novel feature amino acid encoding scheme is proposed to predict MHC/peptide complexes. In the proposed method, we have combined orthonormal encoding (OE) and Taylor's Venn-diagram, and have used Linear support vector machines as the classifier in the tests. We also have compared our method to current feature encoding scheme techniques. The tests have been carried out on comparatively large Human leukocyte antigen (HLA)-A and HLA-B allele peptide three binding datasets extracted from the Immune epitope database and analysis resource. On three datasets experimented, the IC50 cutoff a criteria is used to select the binders and non-binders peptides. Experimental results show that our amino acid encoding scheme leads to better classification performance than other amino acid encoding schemes on a standalone classifier.
解析 T 细胞表位的理解对于疫苗开发至关重要。细胞毒性 T 细胞被激活,作为识别与主要组织相容性复合体 (MHC) 类 I 分子结合的特定肽的主要步骤。这是启动免疫系统反应的主要步骤。对 MHC 特异性的了解将为病原体的诊断、治疗以及肽疫苗的开发指明方向。到目前为止,已经开发了许多方法来预测 MHC/肽结合。在本文中,提出了一种新的特征氨基酸编码方案来预测 MHC/肽复合物。在提出的方法中,我们将正交编码 (OE) 和泰勒的 Venn 图结合起来,并在测试中使用线性支持向量机作为分类器。我们还将我们的方法与当前的特征编码方案技术进行了比较。测试是在从免疫表位数据库和分析资源中提取的相对较大的人类白细胞抗原 (HLA)-A 和 HLA-B 等位基因肽三个结合数据集上进行的。在三个数据集上进行的实验中,使用 IC50 截止 a 标准来选择结合物和非结合物肽。实验结果表明,与其他氨基酸编码方案相比,我们的氨基酸编码方案在独立分类器上具有更好的分类性能。