Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, USA.
Stat Med. 2011 Nov 10;30(25):3050-6. doi: 10.1002/sim.4323. Epub 2011 Jul 29.
When a number of models are fit to the same data set, one method of choosing the 'best' model is to select the model for which Akaike's information criterion (AIC) is lowest. AIC applies when maximum likelihood is used to estimate the unknown parameters in the model. The value of -2 log likelihood for each model fit is penalized by adding twice the number of estimated parameters. The number of estimated parameters includes both the linear parameters and parameters in the covariance structure. Another criterion for model selection is the Bayesian information criterion (BIC). BIC penalizes -2 log likelihood by adding the number of estimated parameters multiplied by the log of the sample size. For large sample sizes, BIC penalizes -2 log likelihood much more than AIC making it harder to enter new parameters into the model. An assumption in BIC is that the observations are independent. In mixed models, the observations are not independent. This paper develops a method for calculating the 'effective sample size' for mixed models based on Fisher's information. The effective sample size replaces the sample size in BIC and can vary from the number of subjects to the number of observations. A number of error models are considered based on a general mixed model including unstructured, compound symmetry.
当对同一数据集拟合多个模型时,选择“最佳”模型的一种方法是选择 Akaike 信息准则 (AIC) 最低的模型。AIC 适用于使用最大似然法估计模型中未知参数的情况。对于每个拟合模型的-2 对数似然值,通过加上估计参数的两倍来进行惩罚。估计参数的数量包括线性参数和协方差结构中的参数。另一种模型选择标准是贝叶斯信息准则 (BIC)。BIC 通过将估计参数的数量乘以样本量的对数来惩罚-2 对数似然。对于大样本量,BIC 对-2 对数似然的惩罚比 AIC 更大,从而更难将新参数输入到模型中。BIC 的一个假设是观测值是独立的。在混合模型中,观测值不是独立的。本文开发了一种基于 Fisher 信息的混合模型“有效样本量”的计算方法。有效样本量替代了 BIC 中的样本量,并且可以从受试者数量变化到观测数量。基于包括非结构化、复合对称在内的一般混合模型,考虑了多种误差模型。