Suppr超能文献

量化星形胶质细胞中自发 Ca2+ 振荡的不确定性:阿尔茨海默病的细节。

Quantifying the uncertainty of spontaneous Ca2+ oscillations in astrocytes: particulars of Alzheimer's disease.

机构信息

Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

出版信息

Biophys J. 2011 Aug 3;101(3):554-64. doi: 10.1016/j.bpj.2011.06.041.

Abstract

The quantification of spontaneous calcium (Ca(2+)) oscillations (SCOs) in astrocytes presents a challenge because of the large irregularities in the amplitudes, durations, and initiation times of the underlying events. In this article, we use a stochastic context to account for such SCO variability, which is based on previous models for cellular Ca(2+) signaling. First, we found that passive Ca(2+) influx from the extracellular space determine the basal concentration of this ion in the cytosol. Second, we demonstrated the feasibility of estimating both the inositol 1,4,5-trisphosphate (IP(3)) production levels and the average number of IP(3) receptor channels in the somatic clusters from epifluorescent Ca(2+) imaging through the combination of a filtering strategy and a maximum-likelihood criterion. We estimated these two biophysical parameters using data from wild-type adult mice and age-matched transgenic mice overexpressing the 695-amino-acid isoform of human Alzheimer β-amyloid precursor protein. We found that, together with an increase in the passive Ca(2+) influx, a significant reduction in the sensitivity of G protein-coupled receptors might lie beneath the abnormalities in the astrocytic Ca(2+) signaling, as was observed in rodent models of Alzheimer's disease. This study provides new, to our knowledge, indices for a quantitative analysis of SCOs in normal and pathological astrocytes.

摘要

自发钙 (Ca(2+)) 振荡 (SCO) 的量化在星形胶质细胞中是一个挑战,因为其基础事件的幅度、持续时间和起始时间存在很大的不规则性。在本文中,我们使用随机上下文来解释这种 SCO 变异性,这是基于以前的细胞 Ca(2+) 信号模型。首先,我们发现来自细胞外空间的被动 Ca(2+) 内流决定了胞质溶胶中这种离子的基础浓度。其次,我们通过结合滤波策略和最大似然准则,从荧光 Ca(2+) 成像中演示了从自发钙信号中估计 1,4,5-三磷酸肌醇 (IP(3)) 产生水平和平均 IP(3) 受体通道数目的可行性。我们使用来自野生型成年小鼠和过表达人阿尔茨海默氏症 β-淀粉样前体蛋白 695 个氨基酸同工型的同龄转基因小鼠的数据来估计这两个生物物理参数。我们发现,与被动 Ca(2+) 内流增加一起,G 蛋白偶联受体的敏感性显著降低,可能是阿尔茨海默病啮齿动物模型中星形胶质细胞 Ca(2+) 信号异常的原因。这项研究为正常和病理星形胶质细胞中 SCO 的定量分析提供了新的、据我们所知的指标。

相似文献

3
A mathematical model of spontaneous calcium(II) oscillations in astrocytes.
J Theor Biol. 2008 Apr 21;251(4):553-60. doi: 10.1016/j.jtbi.2007.12.011. Epub 2008 Feb 14.
5
Calcium signalling in astroglia.
Mol Cell Endocrinol. 2012 Apr 28;353(1-2):45-56. doi: 10.1016/j.mce.2011.08.039. Epub 2011 Sep 10.
6
Astrocytic Ca signaling mediated by the endoplasmic reticulum in health and disease.
J Pharmacol Sci. 2020 Oct;144(2):83-88. doi: 10.1016/j.jphs.2020.07.006. Epub 2020 Jul 18.
8
Cellular mechanism for spontaneous calcium oscillations in astrocytes.
Acta Pharmacol Sin. 2006 Jul;27(7):861-8. doi: 10.1111/j.1745-7254.2006.00397.x.
9
Modeling the spontaneous Ca2+ oscillations in astrocytes: Inconsistencies and usefulness.
J Integr Neurosci. 2011 Dec;10(4):439-73. doi: 10.1142/S0219635211002877.
10
Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations.
Neurochem Res. 2011 Jul;36(7):1175-85. doi: 10.1007/s11064-011-0457-7. Epub 2011 Apr 11.

引用本文的文献

1
The Role of Astrocytes in Synaptic Dysfunction and Memory Deficits in Alzheimer's Disease.
Biomolecules. 2025 Jun 20;15(7):910. doi: 10.3390/biom15070910.
2
Analog neuromorphic circuit for spontaneous Ca oscillations.
Sci Rep. 2023 Nov 16;13(1):20107. doi: 10.1038/s41598-023-47433-w.
3
Probing microdomain Ca activity and synaptic transmission with a node-based tripartite synapse model.
Front Netw Physiol. 2023 Feb 10;3:1111306. doi: 10.3389/fnetp.2023.1111306. eCollection 2023.
5
Unraveling ChR2-driven stochastic Ca2+ dynamics in astrocytes: A call for new interventional paradigms.
PLoS Comput Biol. 2021 Feb 10;17(2):e1008648. doi: 10.1371/journal.pcbi.1008648. eCollection 2021 Feb.
7
A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation.
J Neurosci. 2020 Oct 28;40(44):8513-8529. doi: 10.1523/JNEUROSCI.0221-20.2020. Epub 2020 Oct 9.
8
Optical Measurement of Changes in Intracellular Calcium.
Biophys J. 2020 Feb 25;118(4):788-789. doi: 10.1016/j.bpj.2019.06.034. Epub 2019 Jul 5.
9
Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease.
Inflammopharmacology. 2019 Aug;27(4):663-677. doi: 10.1007/s10787-019-00580-x. Epub 2019 Mar 14.

本文引用的文献

1
Modeling the spontaneous Ca2+ oscillations in astrocytes: Inconsistencies and usefulness.
J Integr Neurosci. 2011 Dec;10(4):439-73. doi: 10.1142/S0219635211002877.
2
Derivation of Ca2+ signals from puff properties reveals that pathway function is robust against cell variability but sensitive for control.
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):427-32. doi: 10.1073/pnas.1008435108. Epub 2010 Dec 20.
3
Calcium signals driven by single channel noise.
PLoS Comput Biol. 2010 Aug 5;6(8):e1000870. doi: 10.1371/journal.pcbi.1000870.
4
Brain oscillations: ideal scenery to understand the neurovascular coupling.
Curr Opin Neurol. 2010 Aug;23(4):374-81. doi: 10.1097/WCO.0b013e32833b769f.
5
A genetically targeted optical sensor to monitor calcium signals in astrocyte processes.
Nat Neurosci. 2010 Jun;13(6):759-66. doi: 10.1038/nn.2557. Epub 2010 May 23.
6
Puff-wave transition in an inhomogeneous model for calcium signals.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041904. doi: 10.1103/PhysRevE.81.041904. Epub 2010 Apr 6.
8
Simulation of spontaneous Ca2+ oscillations in astrocytes mediated by voltage-gated calcium channels.
Biophys J. 2009 Nov 4;97(9):2429-37. doi: 10.1016/j.bpj.2009.08.030.
10
Up-regulation of astrocyte metabotropic glutamate receptor 5 by amyloid-β peptide.
Brain Res. 2009 Mar 13;1260:65-75. doi: 10.1016/j.brainres.2008.12.082. Epub 2009 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验